7 5

From Knot Atlas
Jump to navigationJump to search

7 4.gif

7_4

7 6.gif

7_6

7 5.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 7 5's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 7 5 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X3,10,4,11 X5,12,6,13 X7,14,8,1 X13,6,14,7 X11,8,12,9 X9,2,10,3
Gauss code -1, 7, -2, 1, -3, 5, -4, 6, -7, 2, -6, 3, -5, 4
Dowker-Thistlethwaite code 4 10 12 14 2 8 6
Conway Notation [322]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif

Length is 8, width is 3,

Braid index is 3

7 5 ML.gif 7 5 AP.gif
[{9, 2}, {1, 7}, {6, 8}, {7, 9}, {8, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 1}]

[edit Notes on presentations of 7 5]

Knot 7_5.
A graph, knot 7_5.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index 4
Nakanishi index 1
Maximal Thurston-Bennequin number [math]\displaystyle{ \text{$\$$Failed} }[/math]
Hyperbolic Volume 6.44354
A-Polynomial See Data:7 5/A-polynomial

[edit Notes for 7 5's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 2 }[/math]
Topological 4 genus [math]\displaystyle{ 2 }[/math]
Concordance genus [math]\displaystyle{ \textrm{ConcordanceGenus}(\textrm{Knot}(7,5)) }[/math]
Rasmussen s-Invariant -4

[edit Notes for 7 5's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 2 t^2-4 t+5-4 t^{-1} +2 t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ 2 z^4+4 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 17, -4 }
Jones polynomial [math]\displaystyle{ - q^{-9} +2 q^{-8} -3 q^{-7} +3 q^{-6} -3 q^{-5} +3 q^{-4} - q^{-3} + q^{-2} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ a^8 \left(-z^2\right)-a^8+a^6 z^4+2 a^6 z^2+a^4 z^4+3 a^4 z^2+2 a^4 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ a^{11} z^3-a^{11} z+2 a^{10} z^4-2 a^{10} z^2+2 a^9 z^5-2 a^9 z^3+a^9 z+a^8 z^6+a^8 z^2-a^8+3 a^7 z^5-4 a^7 z^3+a^7 z+a^6 z^6-a^6 z^4+a^5 z^5-a^5 z^3-a^5 z+a^4 z^4-3 a^4 z^2+2 a^4 }[/math]
The A2 invariant [math]\displaystyle{ -q^{28}-q^{22}-q^{18}+q^{16}+q^{14}+q^{12}+2 q^{10}+q^6 }[/math]
The G2 invariant [math]\displaystyle{ q^{148}-q^{146}+2 q^{144}-2 q^{142}+q^{138}-2 q^{136}+5 q^{134}-5 q^{132}+4 q^{130}-2 q^{128}-3 q^{126}+4 q^{124}-6 q^{122}+5 q^{120}-3 q^{118}-q^{116}+3 q^{114}-3 q^{112}+q^{110}+2 q^{108}-5 q^{106}+4 q^{104}-3 q^{102}-2 q^{100}+5 q^{98}-7 q^{96}+8 q^{94}-7 q^{92}+2 q^{90}+2 q^{88}-6 q^{86}+6 q^{84}-7 q^{82}+4 q^{80}-2 q^{76}+3 q^{74}-3 q^{72}+2 q^{70}+3 q^{68}-5 q^{66}+3 q^{64}-2 q^{60}+7 q^{58}-5 q^{56}+5 q^{54}-q^{52}+4 q^{48}-4 q^{46}+5 q^{44}-q^{42}+q^{40}+q^{38}-q^{36}+2 q^{34}+q^{30} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_130,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (4, -8)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 16 }[/math] [math]\displaystyle{ -64 }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ \frac{968}{3} }[/math] [math]\displaystyle{ \frac{136}{3} }[/math] [math]\displaystyle{ -1024 }[/math] [math]\displaystyle{ -\frac{5440}{3} }[/math] [math]\displaystyle{ -\frac{928}{3} }[/math] [math]\displaystyle{ -224 }[/math] [math]\displaystyle{ \frac{2048}{3} }[/math] [math]\displaystyle{ 2048 }[/math] [math]\displaystyle{ \frac{15488}{3} }[/math] [math]\displaystyle{ \frac{2176}{3} }[/math] [math]\displaystyle{ \frac{156422}{15} }[/math] [math]\displaystyle{ \frac{5912}{15} }[/math] [math]\displaystyle{ \frac{170888}{45} }[/math] [math]\displaystyle{ \frac{730}{9} }[/math] [math]\displaystyle{ \frac{7142}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-4 is the signature of 7 5. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-7-6-5-4-3-2-10χ
-3       11
-5      110
-7     2  2
-9    11  0
-11   22   0
-13  11    0
-15 12     -1
-17 1      1
-191       -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-5 }[/math] [math]\displaystyle{ i=-3 }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials