7 6

From Knot Atlas
Jump to navigationJump to search

7 5.gif

7_5

7 7.gif

7_7

7 6.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 7 6's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 7 6 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X3849 X5,12,6,13 X9,1,10,14 X13,11,14,10 X11,6,12,7 X7283
Gauss code -1, 7, -2, 1, -3, 6, -7, 2, -4, 5, -6, 3, -5, 4
Dowker-Thistlethwaite code 4 8 12 2 14 6 10
Conway Notation [2212]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif

Length is 7, width is 4,

Braid index is 4

7 6 ML.gif 7 6 AP.gif
[{10, 2}, {1, 8}, {6, 9}, {8, 10}, {7, 3}, {2, 6}, {4, 7}, {3, 5}, {9, 4}, {5, 1}]

[edit Notes on presentations of 7 6]

Knot 7_6.
A graph, knot 7_6.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 2
Super bridge index 4
Nakanishi index 1
Maximal Thurston-Bennequin number [-8][-1]
Hyperbolic Volume 7.08493
A-Polynomial See Data:7 6/A-polynomial

[edit Notes for 7 6's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 1 }[/math]
Topological 4 genus [math]\displaystyle{ 1 }[/math]
Concordance genus [math]\displaystyle{ \textrm{ConcordanceGenus}(\textrm{Knot}(7,6)) }[/math]
Rasmussen s-Invariant -2

[edit Notes for 7 6's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -t^2- t^{-2} +5 t+5 t^{-1} -7 }[/math]
Conway polynomial [math]\displaystyle{ -z^4+z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 19, -2 }
Jones polynomial [math]\displaystyle{ q-2+3 q^{-1} -3 q^{-2} +4 q^{-3} -3 q^{-4} +2 q^{-5} - q^{-6} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -a^6+2 a^4 z^2+2 a^4-a^2 z^4-2 a^2 z^2-a^2+z^2+1 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ a^7 z^3-a^7 z+2 a^6 z^4-2 a^6 z^2+a^6+2 a^5 z^5-a^5 z^3+a^4 z^6+2 a^4 z^4-4 a^4 z^2+2 a^4+4 a^3 z^5-6 a^3 z^3+2 a^3 z+a^2 z^6+a^2 z^4-4 a^2 z^2+a^2+2 a z^5-4 a z^3+a z+z^4-2 z^2+1 }[/math]
The A2 invariant [math]\displaystyle{ -q^{20}-q^{18}+q^{16}+q^{12}+q^{10}+q^6-q^4+q^2+ q^{-4} }[/math]
The G2 invariant [math]\displaystyle{ q^{100}-q^{98}+2 q^{96}-2 q^{94}-3 q^{88}+5 q^{86}-6 q^{84}+4 q^{82}-4 q^{80}-q^{78}+5 q^{76}-8 q^{74}+8 q^{72}-5 q^{70}+q^{68}+2 q^{66}-5 q^{64}+4 q^{62}-2 q^{58}+6 q^{56}-5 q^{54}+2 q^{52}+6 q^{50}-9 q^{48}+11 q^{46}-9 q^{44}+5 q^{42}+2 q^{40}-6 q^{38}+10 q^{36}-9 q^{34}+8 q^{32}-3 q^{30}-3 q^{28}+5 q^{26}-5 q^{24}+3 q^{22}-3 q^{18}+5 q^{16}-3 q^{14}-q^{12}+5 q^{10}-8 q^8+8 q^6-5 q^4-q^2+5-6 q^{-2} +8 q^{-4} -4 q^{-6} +2 q^{-8} + q^{-10} -3 q^{-12} +3 q^{-14} - q^{-16} + q^{-18} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_133,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (1, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 4 }[/math] [math]\displaystyle{ -16 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ \frac{158}{3} }[/math] [math]\displaystyle{ \frac{34}{3} }[/math] [math]\displaystyle{ -64 }[/math] [math]\displaystyle{ -\frac{544}{3} }[/math] [math]\displaystyle{ -\frac{64}{3} }[/math] [math]\displaystyle{ -48 }[/math] [math]\displaystyle{ \frac{32}{3} }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ \frac{632}{3} }[/math] [math]\displaystyle{ \frac{136}{3} }[/math] [math]\displaystyle{ \frac{19471}{30} }[/math] [math]\displaystyle{ -\frac{474}{5} }[/math] [math]\displaystyle{ \frac{17342}{45} }[/math] [math]\displaystyle{ \frac{401}{18} }[/math] [math]\displaystyle{ \frac{1711}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-2 is the signature of 7 6. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-1012χ
3       11
1      1 -1
-1     21 1
-3    22  0
-5   21   1
-7  12    1
-9 12     -1
-11 1      1
-131       -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-3 }[/math] [math]\displaystyle{ i=-1 }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials