10 133
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 133's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1425 X3849 X14,9,15,10 X5,13,6,12 X13,7,14,6 X18,11,19,12 X20,15,1,16 X16,19,17,20 X10,17,11,18 X7283 |
| Gauss code | -1, 10, -2, 1, -4, 5, -10, 2, 3, -9, 6, 4, -5, -3, 7, -8, 9, -6, 8, -7 |
| Dowker-Thistlethwaite code | 4 8 12 2 -14 -18 6 -20 -10 -16 |
| Conway Notation | [23,21,2-] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
|
![]() [{9, 1}, {11, 7}, {6, 8}, {7, 9}, {4, 10}, {1, 6}, {5, 3}, {8, 4}, {2, 5}, {3, 11}, {10, 2}] |
[edit Notes on presentations of 10 133]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 133"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3849 X14,9,15,10 X5,13,6,12 X13,7,14,6 X18,11,19,12 X20,15,1,16 X16,19,17,20 X10,17,11,18 X7283 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, -4, 5, -10, 2, 3, -9, 6, 4, -5, -3, 7, -8, 9, -6, 8, -7 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 12 2 -14 -18 6 -20 -10 -16 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[23,21,2-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{9, 1}, {11, 7}, {6, 8}, {7, 9}, {4, 10}, {1, 6}, {5, 3}, {8, 4}, {2, 5}, {3, 11}, {10, 2}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | |
| Conway polynomial | |
| 2nd Alexander ideal (db, data sources) | |
| Determinant and Signature | { 19, -2 } |
| Jones polynomial | |
| HOMFLY-PT polynomial (db, data sources) | |
| Kauffman polynomial (db, data sources) | |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}-2 q^{20}-q^{18}-q^{16}+q^{12}+q^{10}+2 q^8+q^6+q^2} |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{142}-q^{140}+2 q^{138}-3 q^{136}+q^{134}-q^{132}-3 q^{130}+6 q^{128}-6 q^{126}+4 q^{124}-q^{122}-2 q^{120}+5 q^{118}-4 q^{116}+2 q^{114}+3 q^{112}-3 q^{110}+4 q^{108}+q^{106}-3 q^{104}+8 q^{102}-6 q^{100}+3 q^{98}+q^{96}-4 q^{94}+5 q^{92}-6 q^{90}+3 q^{88}-4 q^{86}-q^{82}-5 q^{80}+q^{78}-4 q^{76}-3 q^{70}+q^{66}-4 q^{64}+6 q^{62}-5 q^{60}+2 q^{58}+4 q^{56}-5 q^{54}+7 q^{52}-2 q^{50}+q^{48}+3 q^{46}-2 q^{44}+q^{42}+2 q^{40}+2 q^{36}+q^{34}-q^{32}+2 q^{30}-q^{28}+q^{26}+q^{24}-q^{22}+2 q^{20}+q^{14}+q^{10}} |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{19}-q^{17}-q^{13}+2 q^5+q} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{54}-q^{52}-2 q^{50}+2 q^{48}+q^{46}-2 q^{44}+2 q^{40}-q^{36}+q^{34}+q^{32}-2 q^{30}+q^{26}-2 q^{24}-q^{22}+q^{20}-2 q^{16}+q^{14}+2 q^{12}+q^6+q^4+q^2} |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{105}-q^{103}-2 q^{101}+3 q^{97}+3 q^{95}-3 q^{93}-4 q^{91}+4 q^{87}+3 q^{85}-2 q^{83}-4 q^{81}-q^{79}+3 q^{77}+4 q^{75}-2 q^{73}-6 q^{71}-2 q^{69}+6 q^{67}+4 q^{65}-5 q^{63}-4 q^{61}+5 q^{59}+5 q^{57}-3 q^{55}-3 q^{53}+3 q^{51}+3 q^{49}-4 q^{47}-3 q^{45}+q^{43}+3 q^{41}-2 q^{37}-5 q^{35}+2 q^{33}+6 q^{31}+q^{29}-8 q^{27}-6 q^{25}+7 q^{23}+7 q^{21}-3 q^{19}-6 q^{17}+q^{15}+5 q^{13}+2 q^{11}-2 q^9+q^5+2 q^3} |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}-2 q^{20}-q^{18}-q^{16}+q^{12}+q^{10}+2 q^8+q^6+q^2} |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{76}-2 q^{74}+4 q^{72}-8 q^{70}+11 q^{68}-14 q^{66}+14 q^{64}-12 q^{62}+8 q^{60}-8 q^{56}+14 q^{54}-19 q^{52}+22 q^{50}-20 q^{48}+20 q^{46}-16 q^{44}+12 q^{42}-6 q^{40}+6 q^{36}-10 q^{34}+12 q^{32}-14 q^{30}+6 q^{28}-8 q^{26}-2 q^{24}-2 q^{20}+2 q^{18}+4 q^{16}+2 q^{14}+6 q^{12}+4 q^8+q^4} |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{72}-q^{68}-q^{66}+q^{62}-q^{60}-q^{58}+q^{52}+q^{50}+2 q^{48}+3 q^{46}+q^{44}-2 q^{40}-q^{38}-2 q^{36}-2 q^{34}-2 q^{32}-q^{30}-q^{28}-q^{26}-2 q^{22}+2 q^{20}+2 q^{18}+2 q^{16}+q^{14}+2 q^{12}+3 q^{10}+q^8+q^4} |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{37}+q^{33}-2 q^{27}-2 q^{25}-2 q^{23}-q^{21}+q^{17}+2 q^{15}+q^{13}+2 q^{11}+q^9+q^7+q^3} |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{78}+q^{72}-q^{70}-3 q^{68}-2 q^{66}-2 q^{64}-4 q^{62}-q^{60}+4 q^{58}+7 q^{56}+6 q^{54}+9 q^{52}+9 q^{50}+2 q^{48}-3 q^{46}-5 q^{44}-11 q^{42}-13 q^{40}-9 q^{38}-7 q^{36}-4 q^{34}+5 q^{30}+5 q^{28}+4 q^{26}+5 q^{24}+5 q^{22}+2 q^{20}+2 q^{18}+2 q^{16}+2 q^{14}+2 q^{12}+q^{10}+q^6} |
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{46}+q^{42}+q^{40}-2 q^{34}-2 q^{32}-3 q^{30}-2 q^{28}-q^{26}+q^{22}+2 q^{20}+2 q^{18}+q^{16}+2 q^{14}+q^{12}+q^{10}+q^8+q^4} |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{60}-q^{58}+2 q^{56}-2 q^{54}+2 q^{52}-2 q^{50}+q^{48}-q^{46}+q^{42}-3 q^{40}+3 q^{38}-4 q^{36}+3 q^{34}-4 q^{32}+2 q^{30}-2 q^{28}+q^{26}+2 q^{20}-q^{18}+3 q^{16}-q^{14}+2 q^{12}+q^8+q^4} |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{98}-q^{94}-q^{92}+q^{90}+q^{88}-2 q^{86}-2 q^{84}+q^{82}+2 q^{80}-q^{78}-2 q^{76}+3 q^{72}+2 q^{70}+2 q^{64}+2 q^{62}+q^{60}-q^{58}-q^{56}-q^{52}-4 q^{50}-3 q^{48}-q^{46}-2 q^{42}-3 q^{40}+2 q^{36}+q^{34}-q^{32}+q^{30}+2 q^{28}+3 q^{26}+q^{20}+2 q^{18}+q^{16}+q^{14}+q^6} |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{82}-q^{80}+q^{78}-2 q^{76}+2 q^{74}-3 q^{72}-2 q^{68}+q^{66}+q^{62}+3 q^{60}+2 q^{58}+6 q^{56}+q^{54}+4 q^{52}-3 q^{50}+q^{48}-7 q^{46}-3 q^{44}-8 q^{42}-4 q^{40}-5 q^{38}-q^{36}+q^{32}+4 q^{30}+2 q^{28}+4 q^{26}+q^{24}+4 q^{22}+2 q^{18}+q^{16}+2 q^{14}+q^{12}+q^{10}+q^6} |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{142}-q^{140}+2 q^{138}-3 q^{136}+q^{134}-q^{132}-3 q^{130}+6 q^{128}-6 q^{126}+4 q^{124}-q^{122}-2 q^{120}+5 q^{118}-4 q^{116}+2 q^{114}+3 q^{112}-3 q^{110}+4 q^{108}+q^{106}-3 q^{104}+8 q^{102}-6 q^{100}+3 q^{98}+q^{96}-4 q^{94}+5 q^{92}-6 q^{90}+3 q^{88}-4 q^{86}-q^{82}-5 q^{80}+q^{78}-4 q^{76}-3 q^{70}+q^{66}-4 q^{64}+6 q^{62}-5 q^{60}+2 q^{58}+4 q^{56}-5 q^{54}+7 q^{52}-2 q^{50}+q^{48}+3 q^{46}-2 q^{44}+q^{42}+2 q^{40}+2 q^{36}+q^{34}-q^{32}+2 q^{30}-q^{28}+q^{26}+q^{24}-q^{22}+2 q^{20}+q^{14}+q^{10}} |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 133"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 19, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {7_6,}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {K11n27,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 133"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-1} - q^{-2} +3 q^{-3} -3 q^{-4} +3 q^{-5} -3 q^{-6} +2 q^{-7} -2 q^{-8} + q^{-9} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{7_6,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11n27,} |
Vassiliev invariants
| V2 and V3: | (1, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 10 133. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} +2 q^{-7} - q^{-8} -3 q^{-9} +4 q^{-10} -5 q^{-12} +3 q^{-13} +3 q^{-14} -6 q^{-15} + q^{-16} +6 q^{-17} -6 q^{-18} - q^{-19} +7 q^{-20} -4 q^{-21} -3 q^{-22} +5 q^{-23} - q^{-24} -2 q^{-25} + q^{-26} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 q^{-3} - q^{-4} - q^{-5} -2 q^{-6} +6 q^{-7} +2 q^{-8} -5 q^{-9} -9 q^{-10} +9 q^{-11} +12 q^{-12} -5 q^{-13} -22 q^{-14} +7 q^{-15} +21 q^{-16} -26 q^{-18} +24 q^{-20} +2 q^{-21} -23 q^{-22} -2 q^{-23} +20 q^{-24} + q^{-25} -16 q^{-26} -2 q^{-27} +14 q^{-28} + q^{-29} -8 q^{-30} -2 q^{-31} +5 q^{-32} + q^{-34} -3 q^{-36} -4 q^{-37} +5 q^{-38} +6 q^{-39} -4 q^{-40} -8 q^{-41} +2 q^{-42} +8 q^{-43} + q^{-44} -7 q^{-45} -2 q^{-46} +4 q^{-47} +2 q^{-48} - q^{-49} -2 q^{-50} + q^{-51} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-3} + q^{-4} -2 q^{-5} - q^{-7} +4 q^{-8} +3 q^{-9} -7 q^{-10} -3 q^{-11} -2 q^{-12} +16 q^{-13} +10 q^{-14} -18 q^{-15} -19 q^{-16} -12 q^{-17} +40 q^{-18} +35 q^{-19} -22 q^{-20} -48 q^{-21} -40 q^{-22} +58 q^{-23} +69 q^{-24} -11 q^{-25} -65 q^{-26} -70 q^{-27} +55 q^{-28} +87 q^{-29} +5 q^{-30} -63 q^{-31} -83 q^{-32} +45 q^{-33} +88 q^{-34} +10 q^{-35} -54 q^{-36} -79 q^{-37} +34 q^{-38} +82 q^{-39} +12 q^{-40} -43 q^{-41} -73 q^{-42} +19 q^{-43} +73 q^{-44} +17 q^{-45} -26 q^{-46} -64 q^{-47} -2 q^{-48} +57 q^{-49} +21 q^{-50} -5 q^{-51} -47 q^{-52} -18 q^{-53} +33 q^{-54} +14 q^{-55} +12 q^{-56} -21 q^{-57} -19 q^{-58} +14 q^{-59} -3 q^{-60} +12 q^{-61} - q^{-62} -7 q^{-63} +12 q^{-64} -15 q^{-65} +19 q^{-69} -9 q^{-70} -5 q^{-71} -7 q^{-72} -4 q^{-73} +16 q^{-74} -5 q^{-77} -6 q^{-78} +5 q^{-79} + q^{-80} +2 q^{-81} - q^{-82} -2 q^{-83} + q^{-84} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




