10 132
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 132's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X4251 X8493 X5,12,6,13 X15,18,16,19 X9,16,10,17 X17,10,18,11 X13,20,14,1 X19,14,20,15 X11,6,12,7 X2837 |
Gauss code | 1, -10, 2, -1, -3, 9, 10, -2, -5, 6, -9, 3, -7, 8, -4, 5, -6, 4, -8, 7 |
Dowker-Thistlethwaite code | 4 8 -12 2 -16 -6 -20 -18 -10 -14 |
Conway Notation | [23,3,2-] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
![]() |
![]() [{3, 10}, {2, 4}, {1, 3}, {13, 11}, {10, 12}, {11, 8}, {7, 9}, {8, 5}, {4, 6}, {5, 7}, {6, 13}, {12, 2}, {9, 1}] |
[edit Notes on presentations of 10 132]
Three dimensional invariants
|
[edit Notes for 10 132's three dimensional invariants] 10 132 is a very interesting knot from the point of view of contact geometry. In particular, it is a transversely nonsimple knot, and it was the last knot with at most 10 crossings for which the maximal Thurston-Bennequin number was calculated. |
Four dimensional invariants
|
Polynomial invariants
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {5_1,}
Same Jones Polynomial (up to mirroring, ): {5_1,}
Vassiliev invariants
V2 and V3: | (3, -5) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 132. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|