10 134
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 134's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X4251 X8493 X9,15,10,14 X5,13,6,12 X13,7,14,6 X11,19,12,18 X15,1,16,20 X19,17,20,16 X17,11,18,10 X2837 |
| Gauss code | 1, -10, 2, -1, -4, 5, 10, -2, -3, 9, -6, 4, -5, 3, -7, 8, -9, 6, -8, 7 |
| Dowker-Thistlethwaite code | 4 8 -12 2 -14 -18 -6 -20 -10 -16 |
| Conway Notation | [221,3,2-] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
|
![]() [{4, 12}, {3, 5}, {1, 4}, {6, 10}, {5, 8}, {2, 6}, {12, 3}, {11, 9}, {10, 7}, {8, 2}, {7, 11}, {9, 1}] |
[edit Notes on presentations of 10 134]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 134"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X8493 X9,15,10,14 X5,13,6,12 X13,7,14,6 X11,19,12,18 X15,1,16,20 X19,17,20,16 X17,11,18,10 X2837 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -10, 2, -1, -4, 5, 10, -2, -3, 9, -6, 4, -5, 3, -7, 8, -9, 6, -8, 7 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 -12 2 -14 -18 -6 -20 -10 -16 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[221,3,2-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(4,\{1,1,1,2,1,1,2,3,-2,3,3\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{4, 12}, {3, 5}, {1, 4}, {6, 10}, {5, 8}, {2, 6}, {12, 3}, {11, 9}, {10, 7}, {8, 2}, {7, 11}, {9, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-4 t^2+4 t-3+4 t^{-1} -4 t^{-2} +2 t^{-3} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^6+8 z^4+6 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 23, 6 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{11}-3 q^{10}+3 q^9-4 q^8+4 q^7-3 q^6+3 q^5-q^4+q^3} |
| HOMFLY-PT polynomial (db, data sources) | |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-8} +z^8 a^{-10} +z^7 a^{-7} +3 z^7 a^{-9} +2 z^7 a^{-11} +z^6 a^{-6} -3 z^6 a^{-8} -3 z^6 a^{-10} +z^6 a^{-12} -3 z^5 a^{-7} -11 z^5 a^{-9} -8 z^5 a^{-11} -5 z^4 a^{-6} +z^4 a^{-8} +5 z^4 a^{-10} -z^4 a^{-12} +11 z^3 a^{-9} +14 z^3 a^{-11} +3 z^3 a^{-13} +7 z^2 a^{-6} -7 z^2 a^{-10} +z^2 a^{-12} +z^2 a^{-14} +2 z a^{-7} -4 z a^{-9} -8 z a^{-11} -2 z a^{-13} -3 a^{-6} +3 a^{-10} + a^{-12} } |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-10} +2 q^{-14} + q^{-16} +2 q^{-18} + q^{-20} + q^{-24} -2 q^{-26} - q^{-28} -2 q^{-30} - q^{-32} + q^{-38} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-50} +2 q^{-54} - q^{-56} +2 q^{-58} +5 q^{-64} -5 q^{-66} +8 q^{-68} -4 q^{-70} +6 q^{-74} -7 q^{-76} +10 q^{-78} -5 q^{-80} +2 q^{-82} +5 q^{-84} -6 q^{-86} +6 q^{-88} -5 q^{-92} +9 q^{-94} -6 q^{-96} + q^{-98} +5 q^{-100} -9 q^{-102} +12 q^{-104} -8 q^{-106} +3 q^{-108} + q^{-110} -7 q^{-112} +8 q^{-114} -10 q^{-116} +5 q^{-118} -4 q^{-120} -3 q^{-122} +4 q^{-124} -8 q^{-126} +2 q^{-128} - q^{-130} -6 q^{-132} +5 q^{-134} -6 q^{-136} -2 q^{-138} +6 q^{-140} -9 q^{-142} +9 q^{-144} -4 q^{-146} -2 q^{-148} +7 q^{-150} -7 q^{-152} +6 q^{-154} - q^{-156} +3 q^{-160} - q^{-162} + q^{-164} +2 q^{-168} -2 q^{-174} - q^{-180} + q^{-182} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-5} +2 q^{-9} + q^{-13} - q^{-17} -2 q^{-21} + q^{-23} } |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-10} +3 q^{-16} + q^{-18} -2 q^{-20} +3 q^{-22} +3 q^{-24} -2 q^{-26} - q^{-28} +2 q^{-30} -2 q^{-32} -3 q^{-34} + q^{-36} -3 q^{-40} +2 q^{-44} - q^{-46} -2 q^{-48} +3 q^{-50} + q^{-52} -3 q^{-54} +2 q^{-56} + q^{-58} - q^{-60} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-15} + q^{-21} +3 q^{-23} + q^{-25} -2 q^{-27} - q^{-29} +5 q^{-31} +5 q^{-33} - q^{-35} -6 q^{-37} +6 q^{-41} +5 q^{-43} -4 q^{-45} -9 q^{-47} -2 q^{-49} +7 q^{-51} +4 q^{-53} -8 q^{-55} -9 q^{-57} +3 q^{-59} +8 q^{-61} -3 q^{-63} -9 q^{-65} + q^{-67} +10 q^{-69} - q^{-71} -6 q^{-73} +7 q^{-77} + q^{-79} -4 q^{-81} -4 q^{-83} +3 q^{-85} +6 q^{-87} +2 q^{-89} -8 q^{-91} -6 q^{-93} +8 q^{-95} +9 q^{-97} -5 q^{-99} -10 q^{-101} +2 q^{-103} +7 q^{-105} +3 q^{-107} -6 q^{-109} -3 q^{-111} + q^{-113} +2 q^{-115} + q^{-117} - q^{-119} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-10} +2 q^{-14} + q^{-16} +2 q^{-18} + q^{-20} + q^{-24} -2 q^{-26} - q^{-28} -2 q^{-30} - q^{-32} + q^{-38} } |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-20} +4 q^{-24} -2 q^{-26} +12 q^{-28} -8 q^{-30} +24 q^{-32} -16 q^{-34} +26 q^{-36} -18 q^{-38} +14 q^{-40} -6 q^{-42} -16 q^{-44} +14 q^{-46} -38 q^{-48} +32 q^{-50} -45 q^{-52} +36 q^{-54} -32 q^{-56} +28 q^{-58} -12 q^{-60} +6 q^{-62} +10 q^{-64} -16 q^{-66} +23 q^{-68} -24 q^{-70} +20 q^{-72} -16 q^{-74} +10 q^{-76} -4 q^{-78} +2 q^{-84} -2 q^{-90} + q^{-92} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-20} +2 q^{-26} +3 q^{-28} + q^{-30} +2 q^{-32} +4 q^{-34} +5 q^{-36} +2 q^{-38} +2 q^{-40} +2 q^{-42} -3 q^{-46} -2 q^{-48} -4 q^{-50} -5 q^{-52} -4 q^{-54} -5 q^{-56} -4 q^{-58} -2 q^{-60} + q^{-62} +2 q^{-64} + q^{-66} +2 q^{-68} +3 q^{-70} + q^{-72} + q^{-78} +2 q^{-80} + q^{-82} - q^{-84} - q^{-88} - q^{-90} - q^{-92} + q^{-96} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-20} +2 q^{-24} +3 q^{-26} +2 q^{-28} +4 q^{-30} +4 q^{-32} + q^{-34} +4 q^{-36} - q^{-40} -2 q^{-44} -5 q^{-46} -4 q^{-48} -5 q^{-50} -5 q^{-52} -3 q^{-54} - q^{-56} +4 q^{-58} +2 q^{-60} +4 q^{-62} +4 q^{-64} - q^{-66} - q^{-68} + q^{-70} -2 q^{-72} - q^{-74} + q^{-76} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-15} +2 q^{-19} + q^{-21} +3 q^{-23} + q^{-25} +2 q^{-27} + q^{-29} -2 q^{-35} - q^{-37} -3 q^{-39} - q^{-41} -2 q^{-43} + q^{-49} + q^{-51} } |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-30} +2 q^{-34} +3 q^{-36} +4 q^{-38} +4 q^{-40} +7 q^{-42} +5 q^{-44} +6 q^{-46} +5 q^{-48} +2 q^{-50} +2 q^{-52} +3 q^{-54} -3 q^{-58} -2 q^{-60} -4 q^{-62} -10 q^{-64} -14 q^{-66} -10 q^{-68} -11 q^{-70} -11 q^{-72} -2 q^{-74} +4 q^{-76} +4 q^{-78} +10 q^{-80} +12 q^{-82} +7 q^{-84} +3 q^{-86} +3 q^{-88} -5 q^{-92} -4 q^{-94} - q^{-98} -2 q^{-100} + q^{-102} + q^{-104} } |
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-20} +2 q^{-24} + q^{-26} +3 q^{-28} +2 q^{-30} +2 q^{-32} +2 q^{-34} + q^{-36} + q^{-38} - q^{-40} -2 q^{-44} - q^{-46} -3 q^{-48} -2 q^{-50} -2 q^{-52} -2 q^{-54} + q^{-60} + q^{-62} + q^{-64} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-20} +2 q^{-24} - q^{-26} +4 q^{-28} -2 q^{-30} +4 q^{-32} - q^{-34} +2 q^{-36} - q^{-40} +2 q^{-42} -4 q^{-44} +5 q^{-46} -6 q^{-48} +5 q^{-50} -5 q^{-52} +3 q^{-54} -3 q^{-56} -2 q^{-62} +2 q^{-64} -3 q^{-66} +3 q^{-68} -3 q^{-70} +2 q^{-72} - q^{-74} + q^{-76} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-30} +2 q^{-38} +2 q^{-40} + q^{-42} - q^{-44} +2 q^{-46} +4 q^{-48} +3 q^{-50} -2 q^{-52} +3 q^{-56} +4 q^{-58} -3 q^{-62} - q^{-64} +2 q^{-66} -3 q^{-70} -3 q^{-72} - q^{-74} - q^{-76} -3 q^{-78} -4 q^{-80} -2 q^{-82} + q^{-84} - q^{-86} -3 q^{-88} -2 q^{-90} +3 q^{-92} +3 q^{-94} - q^{-98} +3 q^{-100} +4 q^{-102} + q^{-104} -2 q^{-106} - q^{-108} + q^{-110} +2 q^{-112} - q^{-114} -2 q^{-116} - q^{-118} + q^{-122} } |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-30} +2 q^{-34} + q^{-36} +5 q^{-38} + q^{-40} +6 q^{-42} + q^{-44} +6 q^{-46} + q^{-48} +2 q^{-50} + q^{-54} + q^{-56} -2 q^{-58} +2 q^{-60} -5 q^{-62} + q^{-64} -8 q^{-66} - q^{-68} -10 q^{-70} -2 q^{-72} -8 q^{-74} -2 q^{-78} +3 q^{-80} +3 q^{-82} +3 q^{-84} +5 q^{-86} + q^{-88} +4 q^{-90} -2 q^{-92} + q^{-94} -3 q^{-96} +2 q^{-98} -2 q^{-100} - q^{-104} + q^{-106} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-50} +2 q^{-54} - q^{-56} +2 q^{-58} +5 q^{-64} -5 q^{-66} +8 q^{-68} -4 q^{-70} +6 q^{-74} -7 q^{-76} +10 q^{-78} -5 q^{-80} +2 q^{-82} +5 q^{-84} -6 q^{-86} +6 q^{-88} -5 q^{-92} +9 q^{-94} -6 q^{-96} + q^{-98} +5 q^{-100} -9 q^{-102} +12 q^{-104} -8 q^{-106} +3 q^{-108} + q^{-110} -7 q^{-112} +8 q^{-114} -10 q^{-116} +5 q^{-118} -4 q^{-120} -3 q^{-122} +4 q^{-124} -8 q^{-126} +2 q^{-128} - q^{-130} -6 q^{-132} +5 q^{-134} -6 q^{-136} -2 q^{-138} +6 q^{-140} -9 q^{-142} +9 q^{-144} -4 q^{-146} -2 q^{-148} +7 q^{-150} -7 q^{-152} +6 q^{-154} - q^{-156} +3 q^{-160} - q^{-162} + q^{-164} +2 q^{-168} -2 q^{-174} - q^{-180} + q^{-182} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 134"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-4 t^2+4 t-3+4 t^{-1} -4 t^{-2} +2 t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^6+8 z^4+6 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 23, 6 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{11}-3 q^{10}+3 q^9-4 q^8+4 q^7-3 q^6+3 q^5-q^4+q^3} |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-8} +z^8 a^{-10} +z^7 a^{-7} +3 z^7 a^{-9} +2 z^7 a^{-11} +z^6 a^{-6} -3 z^6 a^{-8} -3 z^6 a^{-10} +z^6 a^{-12} -3 z^5 a^{-7} -11 z^5 a^{-9} -8 z^5 a^{-11} -5 z^4 a^{-6} +z^4 a^{-8} +5 z^4 a^{-10} -z^4 a^{-12} +11 z^3 a^{-9} +14 z^3 a^{-11} +3 z^3 a^{-13} +7 z^2 a^{-6} -7 z^2 a^{-10} +z^2 a^{-12} +z^2 a^{-14} +2 z a^{-7} -4 z a^{-9} -8 z a^{-11} -2 z a^{-13} -3 a^{-6} +3 a^{-10} + a^{-12} } |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 134"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-4 t^2+4 t-3+4 t^{-1} -4 t^{-2} +2 t^{-3} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{11}-3 q^{10}+3 q^9-4 q^8+4 q^7-3 q^6+3 q^5-q^4+q^3} } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (6, 13) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 6 is the signature of 10 134. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{29}+2 q^{28}+q^{27}-6 q^{26}+6 q^{25}+3 q^{24}-11 q^{23}+7 q^{22}+6 q^{21}-13 q^{20}+4 q^{19}+9 q^{18}-12 q^{17}+10 q^{15}-8 q^{14}-3 q^{13}+9 q^{12}-3 q^{11}-3 q^{10}+4 q^9-q^7+q^6} |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{58}+2 q^{57}+q^{56}-q^{55}-5 q^{54}-q^{53}+10 q^{52}+3 q^{51}-10 q^{50}-13 q^{49}+15 q^{48}+17 q^{47}-11 q^{46}-27 q^{45}+13 q^{44}+27 q^{43}-7 q^{42}-30 q^{41}+6 q^{40}+27 q^{39}-2 q^{38}-24 q^{37}-q^{36}+21 q^{35}+3 q^{34}-13 q^{33}-10 q^{32}+11 q^{31}+9 q^{30}-2 q^{29}-15 q^{28}-q^{27}+10 q^{26}+10 q^{25}-12 q^{24}-10 q^{23}+3 q^{22}+15 q^{21}-3 q^{20}-9 q^{19}-3 q^{18}+9 q^{17}+2 q^{16}-3 q^{15}-3 q^{14}+3 q^{13}+q^{12}-q^{10}+q^9} |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{94}+2 q^{93}+2 q^{92}-3 q^{91}-3 q^{90}-6 q^{89}+8 q^{88}+15 q^{87}-q^{86}-12 q^{85}-32 q^{84}+6 q^{83}+47 q^{82}+23 q^{81}-15 q^{80}-78 q^{79}-24 q^{78}+74 q^{77}+70 q^{76}+6 q^{75}-117 q^{74}-71 q^{73}+77 q^{72}+105 q^{71}+39 q^{70}-126 q^{69}-104 q^{68}+65 q^{67}+111 q^{66}+60 q^{65}-116 q^{64}-110 q^{63}+54 q^{62}+95 q^{61}+67 q^{60}-95 q^{59}-105 q^{58}+42 q^{57}+72 q^{56}+70 q^{55}-66 q^{54}-93 q^{53}+22 q^{52}+41 q^{51}+71 q^{50}-27 q^{49}-71 q^{48}+q^{47}+2 q^{46}+58 q^{45}+8 q^{44}-36 q^{43}-2 q^{42}-31 q^{41}+26 q^{40}+18 q^{39}-4 q^{38}+16 q^{37}-35 q^{36}-4 q^{35}+2 q^{34}+5 q^{33}+31 q^{32}-16 q^{31}-9 q^{30}-12 q^{29}-4 q^{28}+24 q^{27}-9 q^{24}-8 q^{23}+10 q^{22}+q^{21}+3 q^{20}-2 q^{19}-4 q^{18}+3 q^{17}+q^{15}-q^{13}+q^{12}} |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{136}-q^{135}-3 q^{134}+4 q^{132}+5 q^{131}+6 q^{130}-7 q^{129}-22 q^{128}-13 q^{127}+12 q^{126}+40 q^{125}+39 q^{124}-7 q^{123}-70 q^{122}-86 q^{121}-12 q^{120}+105 q^{119}+144 q^{118}+53 q^{117}-117 q^{116}-225 q^{115}-123 q^{114}+133 q^{113}+288 q^{112}+196 q^{111}-99 q^{110}-349 q^{109}-284 q^{108}+74 q^{107}+378 q^{106}+342 q^{105}-17 q^{104}-387 q^{103}-397 q^{102}-17 q^{101}+375 q^{100}+414 q^{99}+60 q^{98}-360 q^{97}-424 q^{96}-76 q^{95}+335 q^{94}+414 q^{93}+94 q^{92}-314 q^{91}-404 q^{90}-100 q^{89}+291 q^{88}+385 q^{87}+112 q^{86}-261 q^{85}-368 q^{84}-130 q^{83}+228 q^{82}+350 q^{81}+145 q^{80}-179 q^{79}-322 q^{78}-176 q^{77}+130 q^{76}+293 q^{75}+186 q^{74}-66 q^{73}-240 q^{72}-210 q^{71}+11 q^{70}+191 q^{69}+192 q^{68}+49 q^{67}-120 q^{66}-180 q^{65}-81 q^{64}+61 q^{63}+128 q^{62}+102 q^{61}+q^{60}-88 q^{59}-87 q^{58}-31 q^{57}+24 q^{56}+67 q^{55}+49 q^{54}+q^{53}-25 q^{52}-31 q^{51}-35 q^{50}-2 q^{49}+18 q^{48}+21 q^{47}+21 q^{46}+15 q^{45}-19 q^{44}-24 q^{43}-19 q^{42}-6 q^{41}+14 q^{40}+28 q^{39}+10 q^{38}-3 q^{37}-16 q^{36}-18 q^{35}-5 q^{34}+13 q^{33}+9 q^{32}+8 q^{31}-q^{30}-9 q^{29}-7 q^{28}+4 q^{27}+q^{26}+3 q^{25}+3 q^{24}-2 q^{23}-3 q^{22}+2 q^{21}+q^{18}-q^{16}+q^{15}} |
| 6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{191}-2 q^{190}-q^{189}+2 q^{188}+q^{187}+q^{186}-2 q^{185}+7 q^{184}-5 q^{183}-9 q^{182}-q^{181}-4 q^{180}+q^{179}+5 q^{178}+41 q^{177}+13 q^{176}-15 q^{175}-32 q^{174}-61 q^{173}-58 q^{172}-3 q^{171}+144 q^{170}+138 q^{169}+75 q^{168}-45 q^{167}-211 q^{166}-296 q^{165}-171 q^{164}+224 q^{163}+406 q^{162}+406 q^{161}+146 q^{160}-324 q^{159}-706 q^{158}-618 q^{157}+67 q^{156}+622 q^{155}+896 q^{154}+618 q^{153}-183 q^{152}-1024 q^{151}-1173 q^{150}-351 q^{149}+570 q^{148}+1238 q^{147}+1131 q^{146}+177 q^{145}-1046 q^{144}-1516 q^{143}-763 q^{142}+320 q^{141}+1279 q^{140}+1408 q^{139}+497 q^{138}-881 q^{137}-1568 q^{136}-955 q^{135}+105 q^{134}+1157 q^{133}+1437 q^{132}+630 q^{131}-729 q^{130}-1483 q^{129}-962 q^{128}+11 q^{127}+1032 q^{126}+1365 q^{125}+647 q^{124}-627 q^{123}-1379 q^{122}-923 q^{121}-49 q^{120}+912 q^{119}+1280 q^{118}+670 q^{117}-485 q^{116}-1247 q^{115}-909 q^{114}-176 q^{113}+720 q^{112}+1173 q^{111}+749 q^{110}-234 q^{109}-1029 q^{108}-898 q^{107}-386 q^{106}+411 q^{105}+985 q^{104}+832 q^{103}+108 q^{102}-681 q^{101}-802 q^{100}-595 q^{99}+13 q^{98}+656 q^{97}+798 q^{96}+427 q^{95}-237 q^{94}-533 q^{93}-646 q^{92}-339 q^{91}+213 q^{90}+547 q^{89}+545 q^{88}+147 q^{87}-132 q^{86}-439 q^{85}-452 q^{84}-157 q^{83}+153 q^{82}+377 q^{81}+266 q^{80}+181 q^{79}-94 q^{78}-272 q^{77}-247 q^{76}-128 q^{75}+89 q^{74}+111 q^{73}+214 q^{72}+110 q^{71}-18 q^{70}-96 q^{69}-134 q^{68}-46 q^{67}-70 q^{66}+62 q^{65}+73 q^{64}+65 q^{63}+33 q^{62}-13 q^{61}+8 q^{60}-84 q^{59}-27 q^{58}-23 q^{57}+6 q^{56}+19 q^{55}+28 q^{54}+62 q^{53}-15 q^{52}-2 q^{51}-30 q^{50}-26 q^{49}-27 q^{48}-3 q^{47}+42 q^{46}+7 q^{45}+22 q^{44}-7 q^{42}-25 q^{41}-16 q^{40}+13 q^{39}-2 q^{38}+12 q^{37}+7 q^{36}+5 q^{35}-9 q^{34}-8 q^{33}+5 q^{32}-4 q^{31}+2 q^{30}+2 q^{29}+4 q^{28}-2 q^{27}-3 q^{26}+3 q^{25}-q^{24}+q^{21}-q^{19}+q^{18}} |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




