10 130
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 130's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X4251 X8493 X5,14,6,15 X15,20,16,1 X9,16,10,17 X19,10,20,11 X11,18,12,19 X17,12,18,13 X13,6,14,7 X2837 |
| Gauss code | 1, -10, 2, -1, -3, 9, 10, -2, -5, 6, -7, 8, -9, 3, -4, 5, -8, 7, -6, 4 |
| Dowker-Thistlethwaite code | 4 8 -14 2 -16 -18 -6 -20 -12 -10 |
| Conway Notation | [311,3,2-] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
|
![]() [{3, 10}, {2, 4}, {1, 3}, {13, 11}, {10, 12}, {11, 5}, {4, 8}, {7, 9}, {8, 6}, {5, 7}, {6, 13}, {12, 2}, {9, 1}] |
[edit Notes on presentations of 10 130]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 130"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X8493 X5,14,6,15 X15,20,16,1 X9,16,10,17 X19,10,20,11 X11,18,12,19 X17,12,18,13 X13,6,14,7 X2837 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -10, 2, -1, -3, 9, 10, -2, -5, 6, -7, 8, -9, 3, -4, 5, -8, 7, -6, 4 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 -14 2 -16 -18 -6 -20 -12 -10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[311,3,2-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(4,\{1,1,1,-2,-1,-1,-2,-2,-3,2,-3\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 10}, {2, 4}, {1, 3}, {13, 11}, {10, 12}, {11, 5}, {4, 8}, {7, 9}, {8, 6}, {5, 7}, {6, 13}, {12, 2}, {9, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^2-4 t+5-4 t^{-1} +2 t^{-2} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^4+4 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 17, 0 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q+2-2 q^{-1} +3 q^{-2} -2 q^{-3} +3 q^{-4} -2 q^{-5} + q^{-6} - q^{-7} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^2 a^6-2 a^6+z^4 a^4+3 z^2 a^4+2 a^4+z^4 a^2+3 z^2 a^2+2 a^2-z^2-1} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^6 z^8+a^4 z^8+a^7 z^7+3 a^5 z^7+2 a^3 z^7-5 a^6 z^6-3 a^4 z^6+2 a^2 z^6-6 a^7 z^5-15 a^5 z^5-8 a^3 z^5+a z^5+7 a^6 z^4-7 a^2 z^4+11 a^7 z^3+21 a^5 z^3+8 a^3 z^3-2 a z^3-4 a^6 z^2+6 a^2 z^2+2 z^2-6 a^7 z-9 a^5 z-3 a^3 z+a z+z a^{-1} +2 a^6+2 a^4-2 a^2-1} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{22}-q^{20}-q^{18}-q^{16}+q^{14}+q^{12}+2 q^{10}+2 q^8+q^6+q^4- q^{-4} } |
| The G2 invariant |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{62}+2 q^{58}+3 q^{54}-q^{52}-3 q^{48}-3 q^{46}-6 q^{44}-6 q^{42}-5 q^{40}-4 q^{38}-q^{34}+5 q^{32}+3 q^{30}+8 q^{28}+3 q^{26}+6 q^{24}+q^{22}+4 q^{20}+q^{18}+2 q^{16}+q^{14}+q^{12}+2 q^{10}+q^6-2 q^4-2- q^{-2} -2 q^{-4} - q^{-8} + q^{-14} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 130"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^2-4 t+5-4 t^{-1} +2 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^4+4 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 17, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q+2-2 q^{-1} +3 q^{-2} -2 q^{-3} +3 q^{-4} -2 q^{-5} + q^{-6} - q^{-7} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^2 a^6-2 a^6+z^4 a^4+3 z^2 a^4+2 a^4+z^4 a^2+3 z^2 a^2+2 a^2-z^2-1} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^6 z^8+a^4 z^8+a^7 z^7+3 a^5 z^7+2 a^3 z^7-5 a^6 z^6-3 a^4 z^6+2 a^2 z^6-6 a^7 z^5-15 a^5 z^5-8 a^3 z^5+a z^5+7 a^6 z^4-7 a^2 z^4+11 a^7 z^3+21 a^5 z^3+8 a^3 z^3-2 a z^3-4 a^6 z^2+6 a^2 z^2+2 z^2-6 a^7 z-9 a^5 z-3 a^3 z+a z+z a^{-1} +2 a^6+2 a^4-2 a^2-1} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {7_5,}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {K11n61,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 130"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^2-4 t+5-4 t^{-1} +2 t^{-2} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q+2-2 q^{-1} +3 q^{-2} -2 q^{-3} +3 q^{-4} -2 q^{-5} + q^{-6} - q^{-7} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{7_5,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11n61,} |
Vassiliev invariants
| V2 and V3: | (4, -6) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of 10 130. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1+ q^{-1} + q^{-2} -2 q^{-3} + q^{-4} +2 q^{-5} -2 q^{-7} +2 q^{-8} +2 q^{-9} -4 q^{-10} + q^{-11} +4 q^{-12} -5 q^{-13} +4 q^{-15} -4 q^{-16} - q^{-17} +3 q^{-18} - q^{-19} - q^{-20} + q^{-21} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^7-2 q^6+2 q^4+q^3-5 q^2-q+9+ q^{-1} -12 q^{-2} -4 q^{-3} +17 q^{-4} +4 q^{-5} -15 q^{-6} -8 q^{-7} +18 q^{-8} +6 q^{-9} -13 q^{-10} -9 q^{-11} +15 q^{-12} +5 q^{-13} -9 q^{-14} -7 q^{-15} +10 q^{-16} +4 q^{-17} -6 q^{-18} -6 q^{-19} +6 q^{-20} +3 q^{-21} -3 q^{-22} -3 q^{-23} +2 q^{-24} - q^{-26} +2 q^{-27} -3 q^{-29} -2 q^{-30} +5 q^{-31} +2 q^{-32} -3 q^{-33} -4 q^{-34} +3 q^{-35} +3 q^{-36} -3 q^{-38} + q^{-40} + q^{-41} - q^{-42} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{12}+2 q^{11}-2 q^9+2 q^8-2 q^7+4 q^6-5 q^5-5 q^4+10 q^3+q^2+7 q-17-15 q^{-1} +19 q^{-2} +13 q^{-3} +16 q^{-4} -28 q^{-5} -31 q^{-6} +18 q^{-7} +22 q^{-8} +30 q^{-9} -27 q^{-10} -41 q^{-11} +11 q^{-12} +19 q^{-13} +35 q^{-14} -17 q^{-15} -38 q^{-16} +4 q^{-17} +11 q^{-18} +32 q^{-19} -8 q^{-20} -33 q^{-21} + q^{-22} +5 q^{-23} +29 q^{-24} -29 q^{-26} -5 q^{-27} +27 q^{-29} +10 q^{-30} -24 q^{-31} -11 q^{-32} -7 q^{-33} +21 q^{-34} +20 q^{-35} -15 q^{-36} -12 q^{-37} -13 q^{-38} +9 q^{-39} +22 q^{-40} -5 q^{-41} -5 q^{-42} -11 q^{-43} -3 q^{-44} +14 q^{-45} -2 q^{-46} +3 q^{-47} -2 q^{-48} -5 q^{-49} +5 q^{-50} -7 q^{-51} +3 q^{-52} +4 q^{-53} +5 q^{-55} -9 q^{-56} -2 q^{-57} + q^{-58} +2 q^{-59} +7 q^{-60} -4 q^{-61} -2 q^{-62} -2 q^{-63} - q^{-64} +4 q^{-65} - q^{-68} - q^{-69} + q^{-70} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




