10 129
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 129's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1425 X3849 X5,14,6,15 X20,16,1,15 X16,10,17,9 X10,20,11,19 X18,12,19,11 X12,18,13,17 X13,6,14,7 X7283 |
| Gauss code | -1, 10, -2, 1, -3, 9, -10, 2, 5, -6, 7, -8, -9, 3, 4, -5, 8, -7, 6, -4 |
| Dowker-Thistlethwaite code | 4 8 14 2 -16 -18 6 -20 -12 -10 |
| Conway Notation | [32,21,2-] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
|
![]() [{12, 2}, {1, 10}, {8, 11}, {10, 12}, {9, 3}, {2, 8}, {5, 1}, {4, 6}, {7, 5}, {6, 9}, {3, 7}, {11, 4}] |
[edit Notes on presentations of 10 129]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 129"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3849 X5,14,6,15 X20,16,1,15 X16,10,17,9 X10,20,11,19 X18,12,19,11 X12,18,13,17 X13,6,14,7 X7283 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, -3, 9, -10, 2, 5, -6, 7, -8, -9, 3, 4, -5, 8, -7, 6, -4 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 14 2 -16 -18 6 -20 -12 -10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[32,21,2-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 2}, {1, 10}, {8, 11}, {10, 12}, {9, 3}, {2, 8}, {5, 1}, {4, 6}, {7, 5}, {6, 9}, {3, 7}, {11, 4}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{11}+q^9-q^7+q^5+q+2 q^{-1} - q^{-3} + q^{-5} - q^{-7} } |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{32}-q^{30}-q^{28}+3 q^{26}-q^{24}-4 q^{22}+2 q^{20}+2 q^{18}-4 q^{16}+4 q^{12}-2 q^{10}-q^8+3 q^6+q^4-q^2+1+5 q^{-2} -3 q^{-4} -3 q^{-6} +4 q^{-8} - q^{-10} -3 q^{-12} +2 q^{-14} + q^{-16} - q^{-18} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{63}+q^{61}+q^{59}-q^{57}-2 q^{55}+q^{53}+5 q^{51}-6 q^{47}-3 q^{45}+5 q^{43}+8 q^{41}-2 q^{39}-11 q^{37}-4 q^{35}+9 q^{33}+10 q^{31}-9 q^{29}-14 q^{27}+4 q^{25}+15 q^{23}-q^{21}-13 q^{19}-q^{17}+13 q^{15}+3 q^{13}-8 q^{11}-4 q^9+6 q^7+5 q^5-q^3-7 q+12 q^{-3} +4 q^{-5} -10 q^{-7} -11 q^{-9} +10 q^{-11} +12 q^{-13} -6 q^{-15} -14 q^{-17} + q^{-19} +12 q^{-21} +4 q^{-23} -8 q^{-25} -5 q^{-27} +3 q^{-29} +5 q^{-31} -3 q^{-35} - q^{-37} + q^{-41} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 129"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 25, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {8_8, K11n39, K11n45, K11n50, K11n132,}
Same Jones Polynomial (up to mirroring, ): {8_8,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 129"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{8_8, K11n39, K11n45, K11n50, K11n132,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{8_8,} |
Vassiliev invariants
| V2 and V3: | (2, -1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 129. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^8+2 q^7+q^6-6 q^5+4 q^4+6 q^3-13 q^2+4 q+14-17 q^{-1} +2 q^{-2} +16 q^{-3} -15 q^{-4} -2 q^{-5} +15 q^{-6} -9 q^{-7} -6 q^{-8} +11 q^{-9} -3 q^{-10} -6 q^{-11} +5 q^{-12} -2 q^{-14} + q^{-15} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{19}-q^{18}-q^{17}-2 q^{16}+4 q^{15}+4 q^{14}-3 q^{13}-10 q^{12}+q^{11}+16 q^{10}+5 q^9-21 q^8-14 q^7+24 q^6+23 q^5-23 q^4-35 q^3+25 q^2+37 q-15-47 q^{-1} +18 q^{-2} +43 q^{-3} -9 q^{-4} -46 q^{-5} +8 q^{-6} +39 q^{-7} +2 q^{-8} -36 q^{-9} -6 q^{-10} +27 q^{-11} +14 q^{-12} -20 q^{-13} -17 q^{-14} +9 q^{-15} +19 q^{-16} - q^{-17} -18 q^{-18} -4 q^{-19} +12 q^{-20} +8 q^{-21} -8 q^{-22} -7 q^{-23} +4 q^{-24} +5 q^{-25} -2 q^{-26} -2 q^{-27} +2 q^{-29} - q^{-30} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{32}+q^{31}+2 q^{30}-q^{28}-7 q^{27}-q^{26}+9 q^{25}+9 q^{24}+5 q^{23}-21 q^{22}-22 q^{21}+7 q^{20}+28 q^{19}+40 q^{18}-18 q^{17}-62 q^{16}-31 q^{15}+27 q^{14}+99 q^{13}+27 q^{12}-86 q^{11}-93 q^{10}-17 q^9+146 q^8+97 q^7-79 q^6-139 q^5-77 q^4+162 q^3+148 q^2-59 q-150-121 q^{-1} +156 q^{-2} +170 q^{-3} -42 q^{-4} -143 q^{-5} -139 q^{-6} +138 q^{-7} +168 q^{-8} -23 q^{-9} -117 q^{-10} -145 q^{-11} +101 q^{-12} +147 q^{-13} +5 q^{-14} -70 q^{-15} -140 q^{-16} +46 q^{-17} +102 q^{-18} +31 q^{-19} -6 q^{-20} -111 q^{-21} -3 q^{-22} +40 q^{-23} +28 q^{-24} +44 q^{-25} -56 q^{-26} -17 q^{-27} -10 q^{-28} - q^{-29} +51 q^{-30} -11 q^{-31} -19 q^{-33} -22 q^{-34} +27 q^{-35} +2 q^{-36} +12 q^{-37} -7 q^{-38} -18 q^{-39} +9 q^{-40} - q^{-41} +7 q^{-42} -7 q^{-44} +3 q^{-45} - q^{-46} +2 q^{-47} -2 q^{-49} + q^{-50} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{46}+3 q^{44}+2 q^{43}-q^{42}-3 q^{41}-10 q^{40}-6 q^{39}+11 q^{38}+20 q^{37}+15 q^{36}-q^{35}-33 q^{34}-48 q^{33}-13 q^{32}+39 q^{31}+76 q^{30}+61 q^{29}-20 q^{28}-112 q^{27}-125 q^{26}-28 q^{25}+121 q^{24}+202 q^{23}+114 q^{22}-97 q^{21}-273 q^{20}-229 q^{19}+38 q^{18}+317 q^{17}+352 q^{16}+60 q^{15}-334 q^{14}-465 q^{13}-174 q^{12}+317 q^{11}+557 q^{10}+290 q^9-287 q^8-617 q^7-376 q^6+226 q^5+658 q^4+461 q^3-201 q^2-669 q-489+141 q^{-1} +671 q^{-2} +542 q^{-3} -136 q^{-4} -662 q^{-5} -537 q^{-6} +89 q^{-7} +647 q^{-8} +563 q^{-9} -77 q^{-10} -623 q^{-11} -550 q^{-12} +29 q^{-13} +579 q^{-14} +563 q^{-15} +8 q^{-16} -523 q^{-17} -539 q^{-18} -76 q^{-19} +440 q^{-20} +524 q^{-21} +131 q^{-22} -338 q^{-23} -471 q^{-24} -195 q^{-25} +221 q^{-26} +407 q^{-27} +229 q^{-28} -107 q^{-29} -306 q^{-30} -242 q^{-31} +3 q^{-32} +206 q^{-33} +214 q^{-34} +63 q^{-35} -101 q^{-36} -158 q^{-37} -97 q^{-38} +20 q^{-39} +92 q^{-40} +90 q^{-41} +27 q^{-42} -29 q^{-43} -56 q^{-44} -48 q^{-45} -10 q^{-46} +22 q^{-47} +35 q^{-48} +30 q^{-49} +5 q^{-50} -16 q^{-51} -27 q^{-52} -20 q^{-53} +20 q^{-55} +16 q^{-56} +8 q^{-57} -4 q^{-58} -16 q^{-59} -9 q^{-60} +3 q^{-61} +7 q^{-62} +3 q^{-63} +3 q^{-64} -2 q^{-65} -6 q^{-66} + q^{-67} +3 q^{-68} - q^{-69} + q^{-71} -2 q^{-72} +2 q^{-74} - q^{-75} } |
| 6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{68}-q^{67}-q^{66}-q^{63}-q^{62}+8 q^{61}+3 q^{60}-2 q^{58}-7 q^{57}-17 q^{56}-19 q^{55}+15 q^{54}+26 q^{53}+33 q^{52}+31 q^{51}+6 q^{50}-57 q^{49}-101 q^{48}-53 q^{47}+2 q^{46}+80 q^{45}+153 q^{44}+163 q^{43}+14 q^{42}-179 q^{41}-245 q^{40}-233 q^{39}-74 q^{38}+217 q^{37}+471 q^{36}+388 q^{35}+45 q^{34}-320 q^{33}-625 q^{32}-618 q^{31}-126 q^{30}+597 q^{29}+927 q^{28}+714 q^{27}+91 q^{26}-775 q^{25}-1321 q^{24}-937 q^{23}+201 q^{22}+1199 q^{21}+1506 q^{20}+943 q^{19}-417 q^{18}-1742 q^{17}-1816 q^{16}-567 q^{15}+1016 q^{14}+1994 q^{13}+1790 q^{12}+223 q^{11}-1750 q^{10}-2370 q^9-1262 q^8+627 q^7+2093 q^6+2300 q^5+753 q^4-1567 q^3-2560 q^2-1653 q+328+2011 q^{-1} +2484 q^{-2} +1033 q^{-3} -1404 q^{-4} -2568 q^{-5} -1804 q^{-6} +166 q^{-7} +1912 q^{-8} +2518 q^{-9} +1160 q^{-10} -1270 q^{-11} -2515 q^{-12} -1875 q^{-13} +33 q^{-14} +1776 q^{-15} +2495 q^{-16} +1283 q^{-17} -1047 q^{-18} -2367 q^{-19} -1941 q^{-20} -213 q^{-21} +1474 q^{-22} +2374 q^{-23} +1467 q^{-24} -608 q^{-25} -1998 q^{-26} -1941 q^{-27} -607 q^{-28} +895 q^{-29} +2018 q^{-30} +1615 q^{-31} +31 q^{-32} -1316 q^{-33} -1696 q^{-34} -976 q^{-35} +112 q^{-36} +1328 q^{-37} +1484 q^{-38} +609 q^{-39} -447 q^{-40} -1093 q^{-41} -1003 q^{-42} -535 q^{-43} +470 q^{-44} +948 q^{-45} +762 q^{-46} +222 q^{-47} -337 q^{-48} -588 q^{-49} -682 q^{-50} -135 q^{-51} +275 q^{-52} +449 q^{-53} +365 q^{-54} +138 q^{-55} -69 q^{-56} -385 q^{-57} -231 q^{-58} -100 q^{-59} +67 q^{-60} +136 q^{-61} +162 q^{-62} +157 q^{-63} -77 q^{-64} -52 q^{-65} -96 q^{-66} -55 q^{-67} -49 q^{-68} +12 q^{-69} +101 q^{-70} +5 q^{-71} +48 q^{-72} +2 q^{-73} -57 q^{-75} -43 q^{-76} +21 q^{-77} -22 q^{-78} +29 q^{-79} +20 q^{-80} +34 q^{-81} -15 q^{-82} -24 q^{-83} +7 q^{-84} -24 q^{-85} + q^{-86} +4 q^{-87} +21 q^{-88} -2 q^{-89} -7 q^{-90} +8 q^{-91} -9 q^{-92} -2 q^{-93} -2 q^{-94} +8 q^{-95} -2 q^{-96} -4 q^{-97} +5 q^{-98} -2 q^{-99} - q^{-101} +2 q^{-102} -2 q^{-104} + q^{-105} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




