K11n61

From Knot Atlas
Jump to navigationJump to search

K11n60.gif

K11n60

K11n62.gif

K11n62

K11n61.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n61 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X5,15,6,14 X2837 X9,17,10,16 X11,18,12,19 X13,1,14,22 X15,7,16,6 X17,20,18,21 X19,12,20,13 X21,11,22,10
Gauss code 1, -4, 2, -1, -3, 8, 4, -2, -5, 11, -6, 10, -7, 3, -8, 5, -9, 6, -10, 9, -11, 7
Dowker-Thistlethwaite code 4 8 -14 2 -16 -18 -22 -6 -20 -12 -10
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation K11n61 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 4 }[/math]
Rasmussen s-Invariant -4

[edit Notes for K11n61's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ t^4-3 t^3+4 t^2-t-1- t^{-1} +4 t^{-2} -3 t^{-3} + t^{-4} }[/math]
Conway polynomial [math]\displaystyle{ z^8+5 z^6+6 z^4+4 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 17, 4 }
Jones polynomial [math]\displaystyle{ -q^7+q^6-2 q^5+3 q^4-2 q^3+3 q^2-2 q+2- q^{-1} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^8 a^{-4} -z^6 a^{-2} +7 z^6 a^{-4} -z^6 a^{-6} -5 z^4 a^{-2} +17 z^4 a^{-4} -6 z^4 a^{-6} -6 z^2 a^{-2} +19 z^2 a^{-4} -10 z^2 a^{-6} +z^2 a^{-8} -2 a^{-2} +8 a^{-4} -6 a^{-6} + a^{-8} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^9 a^{-3} +z^9 a^{-5} +2 z^8 a^{-2} +4 z^8 a^{-4} +2 z^8 a^{-6} +z^7 a^{-1} -3 z^7 a^{-3} -3 z^7 a^{-5} +z^7 a^{-7} -11 z^6 a^{-2} -23 z^6 a^{-4} -12 z^6 a^{-6} -5 z^5 a^{-1} -5 z^5 a^{-3} -6 z^5 a^{-5} -6 z^5 a^{-7} +17 z^4 a^{-2} +39 z^4 a^{-4} +22 z^4 a^{-6} +6 z^3 a^{-1} +14 z^3 a^{-3} +18 z^3 a^{-5} +10 z^3 a^{-7} -10 z^2 a^{-2} -27 z^2 a^{-4} -18 z^2 a^{-6} -z^2 a^{-8} -2 z a^{-1} -6 z a^{-3} -10 z a^{-5} -6 z a^{-7} +2 a^{-2} +8 a^{-4} +6 a^{-6} + a^{-8} }[/math]
The A2 invariant [math]\displaystyle{ -q^2+ q^{-6} +2 q^{-8} +3 q^{-10} + q^{-12} +2 q^{-14} - q^{-16} - q^{-18} -2 q^{-20} - q^{-22} - q^{-26} + q^{-28} }[/math]
The G2 invariant Data:K11n61/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {10_130,}

Vassiliev invariants

V2 and V3: (4, 6)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 16 }[/math] [math]\displaystyle{ 48 }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ \frac{632}{3} }[/math] [math]\displaystyle{ \frac{40}{3} }[/math] [math]\displaystyle{ 768 }[/math] [math]\displaystyle{ 1056 }[/math] [math]\displaystyle{ 160 }[/math] [math]\displaystyle{ 80 }[/math] [math]\displaystyle{ \frac{2048}{3} }[/math] [math]\displaystyle{ 1152 }[/math] [math]\displaystyle{ \frac{10112}{3} }[/math] [math]\displaystyle{ \frac{640}{3} }[/math] [math]\displaystyle{ \frac{82142}{15} }[/math] [math]\displaystyle{ \frac{8072}{15} }[/math] [math]\displaystyle{ \frac{58328}{45} }[/math] [math]\displaystyle{ \frac{322}{9} }[/math] [math]\displaystyle{ \frac{1502}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of K11n61. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-1012345χ
15        1-1
13       110
11      21 -1
9     111 1
7    23   1
5   21    1
3  131    1
1 11      0
-1 1       1
-31        -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=1 }[/math] [math]\displaystyle{ i=3 }[/math] [math]\displaystyle{ i=5 }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n60.gif

K11n60

K11n62.gif

K11n62