T(5,4)
Previous: T(7,3); Next: T(15,2)
Planar Diagram: X[17, 25, 18, 24] X[10, 26, 11, 25] X[3, 27, 4, 26] X[11, 19, 12, 18] X[4,\
20, 5, 19] X[27, 21, 28, 20] X[5, 13, 6, 12] X[28, 14, 29, 13] X[21, 15,\ 22, 14] X[29, 7, 30, 6] X[22, 8, 23, 7] X[15, 9, 16, 8] X[23, 1, 24, 30]\ X[16, 2, 17, 1] X[9, 3, 10, 2]
<a href="../Manual/TubePlot.html"><img src="m.n_240.jpg" border=0 alt="T(m,n)"> |
The m (-1 + n)-Crossing Torus Knot T(m,n)Include[$knotaka.html] Visit <a class=external href="KnotilusURL[GaussCode[PD[TorusKnot[m, n]]]]">T(m,n)'s page</a> at <a class=external href="http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html">Kno tilus</a>! <a href="../Manual/Acknowledgement.html">Acknowledgement</a> |
<a href="../Manual/GaussCode.html">Gauss Code</a>: | {PD[TorusKnot[m, n]]} |
<a href="../Manual/BR.html">Braid Representative</a>: |
BraidPlot[CollapseBraid[BR[TorusKnot[m, n]]], Mode -> HTML] |
<a href="../Manual/AlexanderConway.html">Alexander Polynomial</a>: | PolyPrint[1, t] |
<a href="../Manual/AlexanderConway.html">Conway Polynomial</a>: | PolyPrint[1, z] |
Other knots with the same <a
href="../Manual/AlexanderConway.html">Alexander/Conway Polynomial</a>: |
{ToString[Knot[0, 1], FormatType -> HTMLForm]<>, <>
ToString[Knot[11, NonAlternating, 34], FormatType -> HTMLForm]<>, <>ToString[Knot[11, NonAlternating, 42], FormatType -> HTMLForm]<>, ...} |
<a href="../Manual/DetAndSignature.html">Determinant and Signature</a>: |
{1, 0} |
<a href="../Manual/Jones.html">Jones Polynomial</a>: | Sqrt[q] TorusKnot[m, n]
PolyPrint[-(-----------------------), q] 1 + q |
Other knots (up to mirrors) with the same <a
href="../Manual/Jones.html">Jones Polynomial</a>: |
{...} |
Include[ColouredJones.mhtml]
<a href="../Manual/A2Invariant.html">A2 (sl(3)) Invariant</a>: | PolyPrint[TorusKnot[m, n], q] |
<a href="../Manual/Kauffman.html">Kauffman Polynomial</a>: |
<a href="../Manual/Vassiliev.html">V2 and V3, the type 2 and 3 Vassiliev invariants</a>: | {0, 0} |
<a href="../Manual/KhovanovHomology.html">Khovanov Homology</a>.
The coefficients of the monomials trqj
are shown, along with their alternating sums χ (fixed j,
alternation over r).
The squares with yellow highlighting
are those on the "critical diagonals", where j-2r=s+1 or
j-2r=s+1, where s=0 is the signature of
T(m,n). Nonzero entries off the critical diagonals (if
any exist) are highlighted in red.
TabularKh[$Failed[q, t], {1, -1}]
ComputerTalkHeader
GraphicsBox[`1`.`2`_240.jpg, TubePlot[TorusKnot[`1`, `2`]], m, n] InOut[Crossings[``], TorusKnot[m, n]] InOut[PD[``], TorusKnot[m, n]] InOut[GaussCode[``], TorusKnot[m, n]] InOut[BR[``], TorusKnot[m, n]] InOut[alex = Alexander[``][t], TorusKnot[m, n]] InOut[Conway[``][z], TorusKnot[m, n]] InOut[Select[AllKnots[], (alex === Alexander[#][t])&]] InOut[{KnotDet[`1`], KnotSignature[`1`]}, TorusKnot[m, n]] InOut[J=Jones[``][q], TorusKnot[m, n]] InOut[Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) ===\
Jones[#][q])&]]
Include[ColouredJonesM.mhtml] InOut[A2Invariant[``][q], TorusKnot[m, n]] InOut[Kauffman[``][a, z], TorusKnot[m, n]] InOut[{Vassiliev[2][`1`], Vassiliev[3][`1`]}, TorusKnot[m, n]] InOut[Kh[``][q, t], TorusKnot[m, n]]
<a href="/~drorbn/">Dror Bar-Natan</a>: <a href="../index.html">The Knot Atlas</a>: <a href="index.html">Torus Knots</a>: <a href="#top">The Torus Knot T(m,n)</a> |
|
</body> </html>