Article:Math.AG/0001044/unidentified-references
From Knot Atlas
Jump to navigationJump to search
D. Arinkin and A. Polishchuk, \textit{Fukaya category and Fourier transform}, preprint math/9811023.
T. Bridgeland, \textit{Equivalences of triangulated categories and Fourier-Mukai transforms}, Bull. Lond. Math. Soc. \textbf{31} (1999), 25--34.
P. Deligne, \textit{Action du groupe des tresses sur une cat\'egorie}, Invent. Math. \textbf{128} (1997), 159--175.
M. Khovanov and P. Seidel, \textit{Quivers, Floer cohomology, and braid group actions}, in preparation, 1999.
M. Kontsevich, \textit{Homological Algebra of Mirror Symmetry}, International Congress of Mathematicians, Z\"urich 1994. Birkh\"auser, 1995.
S.\,A. Kuleshov, \textit{Exceptional bundles on $K3$ surfaces}, in \cite{Ru}.
A. Maciocia, \textit{Generalized Fourier-Mukai transforms}, J. Reine Angew. Math. \textbf{480} (1996), 197--211.
D.\,R. Morrison, \textit{Through the looking glass}, Mirror Symmetry III (Montreal 1995), AMS/IP Stud. Adv. Math. 10 (1999), 263--277.
S. Mukai, \textit{Duality between $D(X)$ and $D(\widehat X)$ with its application to Picard sheaves}, Nagoya Math. Jour. \textbf{81} (1981), 153--175.
H. Pinkham, \textit{Singularit\'es exceptionnelles, la dualit\'e \'etrange d'Arnold, et les surfaces $K3$}, C. R. Acad. Sc. Paris \textbf{284\,A} (1977) 615--618.
A.\,N. Rudakov et al., \textit{Helices and vector bundles: Seminaire Rudakov}, LMS Lecture Note Series 148, Cambridge University Press, 1990.
P.\,S. Seidel, \textit{Lagrangian two-spheres can be symplectically knotted}, preprint math/9803083.
P.\,S. Seidel and R.\,P. Thomas, \textit{Braid group actions on derived categories of sheaves}, pre\-print 1999.
A. Strominger, S.-T. Yau and E. Zaslow, \textit{Mirror Symmetry is T-Duality}, Nucl. Phys. \textbf{B479} (1996), 243--259.
C. Vafa, \textit{Extending Mirror Conjecture to Calabi-Yau with Bundles}, preprint hep-th/ 9804131.