Article:Math.AG/0001044/unidentified-references

From Knot Atlas
Jump to navigationJump to search
   

 D. Arinkin and A. Polishchuk, \textit{Fukaya category and Fourier transform}, preprint math/9811023.  


 T. Bridgeland, \textit{Equivalences of triangulated categories and Fourier-Mukai transforms}, Bull. Lond. Math. Soc. \textbf{31} (1999), 25--34.  

 P. Deligne, \textit{Action du groupe des tresses sur une cat\'egorie}, Invent. Math. \textbf{128} (1997), 159--175.  

 M. Khovanov and P. Seidel, \textit{Quivers, Floer cohomology, and braid group actions}, in preparation, 1999.  

 M. Kontsevich,  \textit{Homological Algebra of Mirror Symmetry}, International Congress of Mathematicians, Z\"urich 1994. Birkh\"auser, 1995.      

 S.\,A. Kuleshov, \textit{Exceptional bundles on $K3$ surfaces}, in \cite{Ru}.  

 A. Maciocia, \textit{Generalized Fourier-Mukai transforms}, J. Reine Angew. Math. \textbf{480} (1996), 197--211.  

 D.\,R. Morrison, \textit{Through the looking glass}, Mirror Symmetry III (Montreal 1995), AMS/IP Stud. Adv. Math. 10 (1999), 263--277.  

 S. Mukai, \textit{Duality between $D(X)$ and $D(\widehat X)$ with its application to Picard sheaves}, Nagoya Math. Jour. \textbf{81} (1981), 153--175.  


 H. Pinkham, \textit{Singularit\'es exceptionnelles, la dualit\'e \'etrange d'Arnold, et les surfaces $K3$}, C. R. Acad. Sc. Paris \textbf{284\,A} (1977) 615--618.  

 A.\,N. Rudakov et al., \textit{Helices and vector bundles: Seminaire Rudakov}, LMS Lecture Note Series 148, Cambridge University Press, 1990.  

 P.\,S. Seidel, \textit{Lagrangian two-spheres can be symplectically knotted}, preprint math/9803083.  

 P.\,S. Seidel and R.\,P. Thomas, \textit{Braid group actions on derived categories of sheaves}, pre\-print 1999.  

 A. Strominger, S.-T. Yau and E. Zaslow, \textit{Mirror Symmetry is T-Duality}, Nucl. Phys. \textbf{B479} (1996), 243--259.  


 C. Vafa, \textit{Extending Mirror Conjecture to Calabi-Yau with Bundles}, preprint hep-th/ 9804131.