Article:Math.DG/9809001/unidentified-references
From Knot Atlas
Jump to navigationJump to search
R.~Abraham, J.~E. Marsden, and T.~Ratiu, \emph{Manifolds, tensor analysis, and applications}, second ed., Springer, New York, 1988. S.~Agmon, \emph{Unicit{\'e} et convexit{\'e} dans les probl{\`e}mes differentiels}, Sem. Math. Sup., 1965, Univ. of Montreal Press, Montreal, 1966. S.~Agmon and L.~Nirenberg, \emph{Lower bounds and uniqueness theorems for solutions of differential equations in {H}ilbert spaces}, Comm. Pure Appl. Math. \textbf{20} (1967), 207--229. N.~Anghel, \emph{Generic vanishing for harmonic spinors of twisted dirac operators}, Proc. Amer. Math. Soc. \textbf{124} (1996), 3555--3561. N.~Aronszajn, \emph{A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of the second order}, J. Math. Pures Appl. \textbf{36} (1957), 235--249. M.~F. Atiyah and I.~M. Singer, \emph{Index of elliptic operators. {IV}}, Ann. Math. \textbf{93} (1971), 119--138. J-P. Bourguignon and P.~Gauduchon, \emph{Spineurs, op{\'e}rateurs de {D}irac et variations de m{\'e}triques}, Comm. Math. Phys. \textbf{144} (1992), 581--599. R.~Bryant and C.~H. Taubes, \emph{private communication}. J.~B. Conway, \emph{A course in functional analysis}, Springer, New York, 1985. S.~K. Donaldson, \emph{Connections, cohomology and the intersection forms of four-manifolds}, J. Differential Geom. \textbf{24} (1986), 275--341. \bysame, \emph{The orientation of {Y}ang-{M}ills moduli spaces and 4-manifold topology}, J. Differential Geom. \textbf{26} (1987), 397--428. \bysame, \emph{Differential topology and complex variables}, Arbeitstagung {P}roceedings (Bonn, Germany), Max {P}lanck {I}nstitut {f\"ur} {M}athematik, 1990. \bysame, \emph{Polynomial invariants for smooth four-manifolds}, Topology \textbf{29} (1990), 257--315. S.~K. Donaldson and P.~B. Kronheimer, \emph{The geometry of four-manifolds}, Oxford Univ. Press, Oxford, 1990. \bysame, preprint (preliminary version of \cite{FL1}), 1996. \bysame, \emph{{PU(2)} monopoles. {IV}: {S}urjectivity of gluing maps}, in preparation. A.~Floer, \emph{An instanton-invariant for 3-manifolds}, Comm. Math. Phys. \textbf{118} (1988), 215--240. D.~Freed and K.~K. Uhlenbeck, \emph{Instantons and four-manifolds}, 2nd ed., Springer, New York, 1991. R.~Friedman and J.~W. Morgan, \emph{Smooth four-manifolds and complex surfaces}, Springer, Berlin, 1994. K.~Fukaya and K.~Ono, \emph{Arnold conjecture and {G}romov-{W}itten invariant}, Topology \textbf{38} (1999), 933--1048. P.~B. Gilkey, \emph{Invariance theory, the heat equation, and the {A}tiyah-{S}inger index theorem}, Publish or Perish, Wilmington, DE, 1984. J.~Harris, \emph{Algebraic geometry}, Springer, New York, 1992. N.~Hitchin, \emph{Harmonic spinors}, Adv. in Math. \textbf{14} (1974), 1--55. Z.~Jin and J.~L. Kazdan, \emph{On the rank of harmonic maps}, Math. Z. \textbf{207} (1991), 535--537. R.~V. Kadison and J.~R. Ringrose, \emph{Fundamentals of the theory of operator algebras}, vol.~I, Academic Press, New York, 1983. J.~Kazdan, \emph{Unique continuation in geometry}, Comm. Pure Appl. Math. \textbf{41} (1988), 667--681. J.~L. Kazdan, \emph{Some topics in the study of elliptic equations}, Proc. {F}ourth {KIT} workshop (Y.~H. Choe and U.~J. Choi, eds.), Korean Inst. Technology, Math. Research Center, Taeju, Korea, 1989, pp.~41--65. S.~Kobayashi, \emph{Differential geometry of complex vector bundles}, Princeton Univ. Press, Princeton, NJ, 1987. U.~Koschorke, \emph{Infinite-dimensional {K}-theory and characteristic classes of {F}redholm bundle maps}, Global Analysis (F.~E. Browder, ed.), Proc. Symp. Pure Math., vol. 15-I, Amer. Math. Soc., Providence, RI, 1970, pp.~95--133. D.~Kotschick, \emph{The {S}eiberg-{W}itten equations on symplectic manifolds [after {C}.~{H}.~{T}aubes]}, S\'eminaire Bourbaki 1995/96. Expos\'es 805--819, Ast\'erisque, vol. 241, Soci\'et\'e Math\'ematique de France, Paris, 1997, Expos\'e 812, pp.~195--220. P.~B. Kronheimer, \emph{Embedded surfaces and gauge theory in three and four dimensions}, Surveys in differential geometry, Vol. III (Cambridge, MA, 1996), Internat. Press, Boston, MA, 1998, pp.~243--298. P.~B. Kronheimer and T.~S. Mrowka, in preparation. \bysame, \emph{The genus of embedded surfaces in the projective plane}, Math. Res. Lett. \textbf{1} (1994), 797--808. \bysame, \emph{Embedded surfaces and the structure of {D}onaldson's polynomial invariants}, J. Differential Geom. \textbf{43} (1995), 573--734. \bysame, \emph{Monopoles and contact structures}, Invent. Math. \textbf{130} (1997), 209--255. M.~Kuranishi, \emph{New proof for the existence of locally complete families of complex structures}, Proc. Conf. on Complex Analysis (A.~Aeppli, E.~Calabi, and H.~R{\"o}hrl, eds.), Springer, New York, 1965, pp.~142--154. H.~B. Lawson and M-L. Michelsohn, \emph{Spin geometry}, Princeton Univ. Press, Princeton, NJ, 1988. G.~Liu and G.~Tian, \emph{Arnold conjecture for general symplectic manifolds}, J. Differential Geom. \textbf{49} (1998), 1--74. S.~Maier, \emph{Generic metrics and connections on spin and {$\text{spin}^c$} manifolds}, Comm. Math. Phys. \textbf{188} (1997), 407--437. M.~Marcolli, \emph{Seiberg-{W}itten gauge theory}, Hindustan Book Agency, New Delhi, 1999, MPIM Preprint 1998-85, http://www.mpim-bonn.mpg.de. J.~W. Morgan, \emph{The {S}eiberg-{W}itten equations and applications to the topology of smooth four-manifolds}, Princeton Univ. Press, Princeton, NJ, 1996. J.~W. Morgan, T.~S. Mrowka, and D.~Ruberman, \emph{{$L^2$} moduli spaces and a vanishing theorem for {D}onaldson polynomial invariants}, Internat. Press, Cambridge, MA, 1994. C.~B. Morrey, \emph{Multiple integrals in the calculus of variations}, Springer-Verlag, New York, 1966, Die Grundlehren der mathematischen Wissenschaften, Band 130. T.~S. Mrowka, P.~S. Ozsv{\'a}th, and B.~Yu, \emph{Seiberg-{W}itten monopoles on {S}eifert fibered spaces}, Comm. Anal. Geom. \textbf{5} (1997), 685--791. R.~S. Palais, \emph{Foundations of global non-linear analysis}, Benjamin, New York, 1968. V.~Y. Pidstrigatch, \emph{Some glueing formulas for spin polynomials and a proof of the {V}an de {V}en conjecture}, Izv. Ross. Akad. Nauk Ser. Mat. \textbf{58} (1994). \bysame, \emph{From {S}eiberg-{W}itten to {D}onaldson: {$\SO(3)$} monopole equations}, December, 1994, Lecture at the {N}ewton {I}nstitute, Cambridge. \bysame, \emph{Invariants of the smooth structure of an algebraic surface arising from the {D}irac operator}, Russian Acad. Sci. Izv. Math. \textbf{40} (1993), 267--351. Y.~Ruan and G.~Tian, \emph{A mathematical theory of quantum cohomology}, J. Differential Geom. \textbf{42} (1995), 259--367. W.~Rudin, \emph{Functional analysis}, Mc{G}raw-{H}ill, New York, NY, 1973. D.~Salamon, \emph{Spin geometry and {S}eiberg-{W}itten invariants}, Birkh{\"a}user, Boston, to appear. S.~Smale, \emph{An infinite-dimensional version of {S}ard's theorem}, Amer. J. Math. \textbf{87} (1973), 213--221. C.~H. Taubes, \emph{Self-dual connections on 4-manifolds with indefinite intersection matrix}, J. Differential Geom. \textbf{19} (1984), 517--560. \bysame, preprint, 1983 (preliminary version of \cite{TauIndef}). \bysame, \emph{Casson's invariant and gauge theory}, J. Differential Geom. \textbf{31} (1990), 547--599. \bysame, \emph{The {S}eiberg-{W}itten invariants and symplectic forms}, Math. Res. Lett. \textbf{1} (1994), 809--822. A.~N. Tyurin, \emph{Spin-polynomial invariants of smooth structures on algebraic surfaces}, Russian Acad. Sci. Izv. Math. \textbf{42} (1994), 333--369.