Article:Math.DG/9809001/unidentified-references

From Knot Atlas
Jump to navigationJump to search
  

 R.~Abraham, J.~E. Marsden, and T.~Ratiu, \emph{Manifolds, tensor analysis, and   applications}, second ed., Springer, New York, 1988.  

 S.~Agmon, \emph{Unicit{\'e} et convexit{\'e} dans les probl{\`e}mes   differentiels}, Sem. Math. Sup., 1965, Univ. of Montreal Press, Montreal,   1966.  

 S.~Agmon and L.~Nirenberg, \emph{Lower bounds and uniqueness theorems for   solutions of differential equations in {H}ilbert spaces}, Comm. Pure Appl.   Math. \textbf{20} (1967), 207--229.  

 N.~Anghel, \emph{Generic vanishing for harmonic spinors of twisted dirac   operators}, Proc. Amer. Math. Soc. \textbf{124} (1996), 3555--3561.  

 N.~Aronszajn, \emph{A unique continuation theorem for solutions of elliptic   partial differential equations or inequalities of the second order}, J. Math.   Pures Appl. \textbf{36} (1957), 235--249.  

 M.~F. Atiyah and I.~M. Singer, \emph{Index of elliptic operators. {IV}}, Ann.   Math. \textbf{93} (1971), 119--138.  

 J-P. Bourguignon and P.~Gauduchon, \emph{Spineurs, op{\'e}rateurs de {D}irac et   variations de m{\'e}triques}, Comm. Math. Phys. \textbf{144} (1992),   581--599.  


 R.~Bryant and C.~H. Taubes, \emph{private communication}.  

 J.~B. Conway, \emph{A course in functional analysis}, Springer, New York, 1985.  

 S.~K. Donaldson, \emph{Connections, cohomology and the intersection forms of   four-manifolds}, J. Differential Geom. \textbf{24} (1986), 275--341.  

 \bysame, \emph{The orientation of {Y}ang-{M}ills moduli spaces and 4-manifold   topology}, J. Differential Geom. \textbf{26} (1987), 397--428.  

 \bysame, \emph{Differential topology and complex variables}, Arbeitstagung   {P}roceedings (Bonn, Germany), Max {P}lanck {I}nstitut {f\"ur} {M}athematik,   1990.  

 \bysame, \emph{Polynomial invariants for smooth four-manifolds}, Topology   \textbf{29} (1990), 257--315.  

 S.~K. Donaldson and P.~B. Kronheimer, \emph{The geometry of four-manifolds},   Oxford Univ. Press, Oxford, 1990.  


 \bysame, preprint (preliminary version of \cite{FL1}), 1996.  




 \bysame, \emph{{PU(2)} monopoles. {IV}: {S}urjectivity of gluing maps}, in   preparation.  

 A.~Floer, \emph{An instanton-invariant for 3-manifolds}, Comm. Math. Phys.   \textbf{118} (1988), 215--240.  

 D.~Freed and K.~K. Uhlenbeck, \emph{Instantons and four-manifolds}, 2nd ed.,   Springer, New York, 1991.  

 R.~Friedman and J.~W. Morgan, \emph{Smooth four-manifolds and complex   surfaces}, Springer, Berlin, 1994.  

 K.~Fukaya and K.~Ono, \emph{Arnold conjecture and {G}romov-{W}itten invariant},   Topology \textbf{38} (1999), 933--1048.  

 P.~B. Gilkey, \emph{Invariance theory, the heat equation, and the   {A}tiyah-{S}inger index theorem}, Publish or Perish, Wilmington, DE, 1984.  

 J.~Harris, \emph{Algebraic geometry}, Springer, New York, 1992.  

 N.~Hitchin, \emph{Harmonic spinors}, Adv. in Math. \textbf{14} (1974), 1--55.  

 Z.~Jin and J.~L. Kazdan, \emph{On the rank of harmonic maps}, Math. Z.   \textbf{207} (1991), 535--537.  

 R.~V. Kadison and J.~R. Ringrose, \emph{Fundamentals of the theory of operator   algebras}, vol.~I, Academic Press, New York, 1983.  

 J.~Kazdan, \emph{Unique continuation in geometry}, Comm. Pure Appl. Math.   \textbf{41} (1988), 667--681.  

 J.~L. Kazdan, \emph{Some topics in the study of elliptic equations}, Proc.   {F}ourth {KIT} workshop (Y.~H. Choe and U.~J. Choi, eds.), Korean Inst.   Technology, Math. Research Center, Taeju, Korea, 1989, pp.~41--65.  

 S.~Kobayashi, \emph{Differential geometry of complex vector bundles}, Princeton   Univ. Press, Princeton, NJ, 1987.  

 U.~Koschorke, \emph{Infinite-dimensional {K}-theory and characteristic classes   of {F}redholm bundle maps}, Global Analysis (F.~E. Browder, ed.), Proc. Symp.   Pure Math., vol. 15-I, Amer. Math. Soc., Providence, RI, 1970, pp.~95--133.  

 D.~Kotschick, \emph{The {S}eiberg-{W}itten equations on symplectic manifolds   [after {C}.~{H}.~{T}aubes]}, S\'eminaire Bourbaki 1995/96. Expos\'es   805--819, Ast\'erisque, vol. 241, Soci\'et\'e Math\'ematique de France,   Paris, 1997, Expos\'e 812, pp.~195--220.  

 P.~B. Kronheimer, \emph{Embedded surfaces and gauge theory in three and four   dimensions}, Surveys in differential geometry, Vol. III (Cambridge, MA,   1996), Internat. Press, Boston, MA, 1998, pp.~243--298.  

 P.~B. Kronheimer and T.~S. Mrowka, in preparation.  

 \bysame, \emph{The genus of embedded surfaces in the projective plane}, Math.   Res. Lett. \textbf{1} (1994), 797--808.  

 \bysame, \emph{Embedded surfaces and the structure of {D}onaldson's polynomial   invariants}, J. Differential Geom. \textbf{43} (1995), 573--734.  

 \bysame, \emph{Monopoles and contact structures}, Invent. Math. \textbf{130}   (1997), 209--255.  

 M.~Kuranishi, \emph{New proof for the existence of locally complete families of   complex structures}, Proc. Conf. on Complex Analysis (A.~Aeppli, E.~Calabi,   and H.~R{\"o}hrl, eds.), Springer, New York, 1965, pp.~142--154.  

 H.~B. Lawson and M-L. Michelsohn, \emph{Spin geometry}, Princeton Univ. Press,   Princeton, NJ, 1988.  


 G.~Liu and G.~Tian, \emph{Arnold conjecture for general symplectic manifolds},   J. Differential Geom. \textbf{49} (1998), 1--74.  

 S.~Maier, \emph{Generic metrics and connections on spin and {$\text{spin}^c$}   manifolds}, Comm. Math. Phys. \textbf{188} (1997), 407--437.  

 M.~Marcolli, \emph{Seiberg-{W}itten gauge theory}, Hindustan Book Agency, New   Delhi, 1999, MPIM Preprint 1998-85, http://www.mpim-bonn.mpg.de.  


 J.~W. Morgan, \emph{The {S}eiberg-{W}itten equations and applications to the   topology of smooth four-manifolds}, Princeton Univ. Press, Princeton, NJ,   1996.  

 J.~W. Morgan, T.~S. Mrowka, and D.~Ruberman, \emph{{$L^2$} moduli spaces and a   vanishing theorem for {D}onaldson polynomial invariants}, Internat. Press,   Cambridge, MA, 1994.  

 C.~B. Morrey, \emph{Multiple integrals in the calculus of variations},   Springer-Verlag, New York, 1966, Die Grundlehren der mathematischen   Wissenschaften, Band 130.  

 T.~S. Mrowka, P.~S. Ozsv{\'a}th, and B.~Yu, \emph{Seiberg-{W}itten monopoles on   {S}eifert fibered spaces}, Comm. Anal. Geom. \textbf{5} (1997), 685--791.  




 R.~S. Palais, \emph{Foundations of global non-linear analysis}, Benjamin, New   York, 1968.  

 V.~Y. Pidstrigatch, \emph{Some glueing formulas for spin polynomials and a   proof of the {V}an de {V}en conjecture}, Izv. Ross. Akad. Nauk Ser. Mat.   \textbf{58} (1994).  

 \bysame, \emph{From {S}eiberg-{W}itten to {D}onaldson: {$\SO(3)$} monopole   equations}, December, 1994, Lecture at the {N}ewton {I}nstitute, Cambridge.  


 \bysame, \emph{Invariants of the smooth structure of an algebraic surface   arising from the {D}irac operator}, Russian Acad. Sci. Izv. Math. \textbf{40}   (1993), 267--351.  


 Y.~Ruan and G.~Tian, \emph{A mathematical theory of quantum cohomology}, J.   Differential Geom. \textbf{42} (1995), 259--367.  

 W.~Rudin, \emph{Functional analysis}, Mc{G}raw-{H}ill, New York, NY, 1973.  

 D.~Salamon, \emph{Spin geometry and {S}eiberg-{W}itten invariants},   Birkh{\"a}user, Boston, to appear.  


 S.~Smale, \emph{An infinite-dimensional version of {S}ard's theorem}, Amer. J.   Math. \textbf{87} (1973), 213--221.  

 C.~H. Taubes,  \emph{Self-dual connections on 4-manifolds with indefinite   intersection matrix}, J. Differential Geom. \textbf{19} (1984), 517--560.  

 \bysame,  preprint, 1983 (preliminary version of \cite{TauIndef}).  

 \bysame, \emph{Casson's invariant and gauge theory}, J. Differential Geom.   \textbf{31} (1990), 547--599.  

 \bysame, \emph{The {S}eiberg-{W}itten invariants and symplectic forms}, Math.   Res. Lett. \textbf{1} (1994), 809--822.  




 A.~N. Tyurin, \emph{Spin-polynomial invariants of smooth structures on   algebraic surfaces}, Russian Acad. Sci. Izv. Math. \textbf{42} (1994),   333--369.