Article:Math.AG/9801107/unidentified-references

From Knot Atlas
< Article:Math.AG/9801107
Revision as of 05:04, 17 September 2006 by ScottBiblioRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
                              

 Batyrev, V.V.: {\em Toroidal Fano 3-folds},  Math. USSR-Izv. 19, 13-25 (1982)      

  Batyrev, V.V.: {\em Boundness of the degree of   higher-dimensional  toric Fano varieties}, Moscow Univ. Math. Bull.  37, 28-33 (1982)   

  Batyrev, V.V.: {\em Higher-dimensional toric varieties  with ample anticanonical class}. PhD Thesis (in Russian), Moscow State  University, 1984.   

 Batyrev, V.V.; Mel'nikov, D.A.: {\em A theorem on non-extensibility of toric varieties},   Mosc. Univ. Math. Bull. {\bf 41}, No.3, 23-27 (1986)   

  Batyrev, V.V.:  {\em On the classification of smooth projective toric varieties},  Tohoku Math. J., II. Ser. 43, No.4, 569-585 (1991)   

 Batyrev, V. V.: {\em Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in  toric varieties}, J. Algebr. Geom. 3, No.3, 493-535 (1994)  

 Batyrev, V. V.; Cox, D. A.:  {\em On the Hodge structure of projective hypersurfaces in toric  varieties}, Duke Math. J. 75, No.2, 293-338 (1994)  

 Borel, A.:  {\em Linear algebraic groups},  2nd ed., Graduate Texts in Mathematics,  {\bf 126}, New York, Springer-Verlag (1991)  

 Borisov, A.A.; Borisov, L.A.: {\em Singular toric Fano varieties}, Math. USSR, Sb. 75, No.1,  277-283 (1993)  

 Cox, D. A.:  {\em The homogeneous coordinate ring of a toric variety},  J. Algebr. Geom. {\bf 4}, No.1, 17-50 (1995)  

 Cutkosky, S. D.:  {\em On Fano 3-folds},   Manuscr. Math. 64, No.2, 189-204 (1989).    

 Danilov V.I.: {\em The geometry of toric varieties},   Uspekhi  Math. Nauk (2), 33, 85-134(1978); Math. URSS - Izv., 17,97-154 (1981)  

 Evertz, S.: {\em Zur Klassifikation 4-dimensionaler  Fano-Variet\"{a}ten}. Diplomarbeit (in German), Math. Inst. der  Ruhr-Universit\"{a}t  Bochum, September 1988.   

 Ewald, G.: {\em On  the  classification  of  toric   Fano  varieties}.  Discrete Comput. Geom. 3, 49-54 (1988)  

 Fulton, W.: {\em  Introduction to toric varieties}, The 1989 William H. Roever lectures  in geometry, Annals of Mathematics Studies {\bf 131},  Princeton University  Press, (1993)   

 Gr\"unbaum, B.; Streedharan, V.P.: {\em An enumeration of  simplicial  4-polytopes with 8  vertices},  J.   Combinatorial  Theory,  2,  435-465 (1967)  

 Iskovskih, V.A.: {\em Fano 3-folds I},   Math.  USSR-Izv,  485-527 (1977)   

 Iskovskih, V.A.: {\em Fano 3-folds II}, Math. USSR -  Izv., 12, 469-506 (1978)  

 Kleinschmidt, P.: {\em A classification of toric varieties  with few generators},  Aequationes Math. 35, No.2/3, 254-266 (1988)  

 Kollar, J.; Miyaoka, Y.; Mori, S.:  {\em Rational connectedness and boundedness of Fano manifolds},  J. Differ. Geom. 36, No.3, 765-779 (1992).  

 Kollar, J.; Miyaoka, Y.; Mori, S.:  {\em Rational curves on Fano varieties},  in {\sl Classification of irregular varieties, minimal models  and abelian varieties}, Proc. Conf., Trento/Italy 1990, Lect. Notes Math. {\bf 1515}, 100-105 (1992).  

  Mabuchi, T.: {\em Einstein - K\"ahler  forms,  Futaki  invariants  and  convex geometry on  toric  Fano  varieties},   Osaka  J.  Math,  24, 705-737 (1987)  

 Manin, Yu. I.: {\em Cubic forms. Algebra, geometry,  arithmetic}, 2nd ed., Amsterdam-New York-Oxford: North-Holland, (1986)  

 Mori, S.:  {\em Threefolds whose canonical bundles are not numerically effective},  Ann. Math., II. Ser. 116, 133-176 (1982)   

 Mori, S.:  {\em Cone of curves, and Fano 3-folds},  Proc. Int. Congr. Math., Warszawa 1983, Vol. 1, 747-752 (1984)  

 Mori, S.;  Mukai,  S.: {\em Classification  of   Fano  3-folds  with $B_2 >2$}, Manusripta Math. 36, 147-162 (1981)  

  Mori, S.; Mukai,  S.:  {\em On Fano 3-folds with  $B_2 > 2$}, in {\sl Algebraic varieties and  analytic varieties}, Proc. Symp., Tokyo 1981, Adv. Stud. Pure Math. 1,  101-129 (1983)    

  Mori, S.; Mukai, S.: {\em Classification of Fano $3$-folds with  $B\sb 2\geq 2$. I}, in  {\sl  Algebraic and topological theories}  Nagata, M. (ed.) et al.,   Papers from the symposium dedicated to the memory of Dr. Takehiko Miyata held in Kinosaki,  October 30-November 9, 1984. Tokyo: Kinokuniya Company Ltd. 496-545 (1986)  

 Murre, J.P.:  {\em Classification of Fano threefolds according to Fano and  Iskovskih}, in  {\sl Algebraic threefolds}, Proc. 2nd 1981 Sess. C.I.M.E.,  Varenna/Italy 1981, Lect. Notes Math. 947, 35-92 (1982).   

 Nadel, A. M.:  {\em The boundedness of degree of Fano varieties with Picard number one},  J. Am. Math. Soc. 4, No.4, 681-692 (1991).   

 Nakagawa, Y.: {\em A letter to V. Batyrev},  November 13, 1991.   

 Nakagawa, Y.: {\em  Einstein-Kaehler toric Fano fourfolds},  Tohoku Math. J., II. Ser. 45, No.2, 297-310 (1993).   

 Nakagawa, Y.: {\em Classification of Einstein-Kaehler toric Fano fourfolds},  Tohoku Math. J., II. Ser. 46, No.1, 125-133 (1994).   

 Oda, T.: {\em Convex bodies and algebraic geometry. An introduction to the theory of toric varieties},  Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Bd. 15.  Berlin, Springer-Verlag (1988).   

 Reid, M.: {\em Decomposition of toric morphisms},   in {\sl  Arithmetic and geometry}, Vol. II: {\sl Geometry},  Prog. Math. 36, 395-418 (1983)  

 Voskresenskij, V.E.; Klyachko A.A.:  {\em Toroidal Fano varieties  and root systems}, Math. USSR-Izv.  24, 221-244 (1985)   

 Watanabe, K.; Watanabe, M: {\em The  classification   of  Fano  3-folds with torus embeddings}, Tokyo J. Math. 5,  37-48 (1982)