Article:Math.AG/9801107/unidentified-references
From Knot Atlas
Jump to navigationJump to search
Batyrev, V.V.: {\em Toroidal Fano 3-folds}, Math. USSR-Izv. 19, 13-25 (1982) Batyrev, V.V.: {\em Boundness of the degree of higher-dimensional toric Fano varieties}, Moscow Univ. Math. Bull. 37, 28-33 (1982) Batyrev, V.V.: {\em Higher-dimensional toric varieties with ample anticanonical class}. PhD Thesis (in Russian), Moscow State University, 1984. Batyrev, V.V.; Mel'nikov, D.A.: {\em A theorem on non-extensibility of toric varieties}, Mosc. Univ. Math. Bull. {\bf 41}, No.3, 23-27 (1986) Batyrev, V.V.: {\em On the classification of smooth projective toric varieties}, Tohoku Math. J., II. Ser. 43, No.4, 569-585 (1991) Batyrev, V. V.: {\em Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties}, J. Algebr. Geom. 3, No.3, 493-535 (1994) Batyrev, V. V.; Cox, D. A.: {\em On the Hodge structure of projective hypersurfaces in toric varieties}, Duke Math. J. 75, No.2, 293-338 (1994) Borel, A.: {\em Linear algebraic groups}, 2nd ed., Graduate Texts in Mathematics, {\bf 126}, New York, Springer-Verlag (1991) Borisov, A.A.; Borisov, L.A.: {\em Singular toric Fano varieties}, Math. USSR, Sb. 75, No.1, 277-283 (1993) Cox, D. A.: {\em The homogeneous coordinate ring of a toric variety}, J. Algebr. Geom. {\bf 4}, No.1, 17-50 (1995) Cutkosky, S. D.: {\em On Fano 3-folds}, Manuscr. Math. 64, No.2, 189-204 (1989). Danilov V.I.: {\em The geometry of toric varieties}, Uspekhi Math. Nauk (2), 33, 85-134(1978); Math. URSS - Izv., 17,97-154 (1981) Evertz, S.: {\em Zur Klassifikation 4-dimensionaler Fano-Variet\"{a}ten}. Diplomarbeit (in German), Math. Inst. der Ruhr-Universit\"{a}t Bochum, September 1988. Ewald, G.: {\em On the classification of toric Fano varieties}. Discrete Comput. Geom. 3, 49-54 (1988) Fulton, W.: {\em Introduction to toric varieties}, The 1989 William H. Roever lectures in geometry, Annals of Mathematics Studies {\bf 131}, Princeton University Press, (1993) Gr\"unbaum, B.; Streedharan, V.P.: {\em An enumeration of simplicial 4-polytopes with 8 vertices}, J. Combinatorial Theory, 2, 435-465 (1967) Iskovskih, V.A.: {\em Fano 3-folds I}, Math. USSR-Izv, 485-527 (1977) Iskovskih, V.A.: {\em Fano 3-folds II}, Math. USSR - Izv., 12, 469-506 (1978) Kleinschmidt, P.: {\em A classification of toric varieties with few generators}, Aequationes Math. 35, No.2/3, 254-266 (1988) Kollar, J.; Miyaoka, Y.; Mori, S.: {\em Rational connectedness and boundedness of Fano manifolds}, J. Differ. Geom. 36, No.3, 765-779 (1992). Kollar, J.; Miyaoka, Y.; Mori, S.: {\em Rational curves on Fano varieties}, in {\sl Classification of irregular varieties, minimal models and abelian varieties}, Proc. Conf., Trento/Italy 1990, Lect. Notes Math. {\bf 1515}, 100-105 (1992). Mabuchi, T.: {\em Einstein - K\"ahler forms, Futaki invariants and convex geometry on toric Fano varieties}, Osaka J. Math, 24, 705-737 (1987) Manin, Yu. I.: {\em Cubic forms. Algebra, geometry, arithmetic}, 2nd ed., Amsterdam-New York-Oxford: North-Holland, (1986) Mori, S.: {\em Threefolds whose canonical bundles are not numerically effective}, Ann. Math., II. Ser. 116, 133-176 (1982) Mori, S.: {\em Cone of curves, and Fano 3-folds}, Proc. Int. Congr. Math., Warszawa 1983, Vol. 1, 747-752 (1984) Mori, S.; Mukai, S.: {\em Classification of Fano 3-folds with $B_2 >2$}, Manusripta Math. 36, 147-162 (1981) Mori, S.; Mukai, S.: {\em On Fano 3-folds with $B_2 > 2$}, in {\sl Algebraic varieties and analytic varieties}, Proc. Symp., Tokyo 1981, Adv. Stud. Pure Math. 1, 101-129 (1983) Mori, S.; Mukai, S.: {\em Classification of Fano $3$-folds with $B\sb 2\geq 2$. I}, in {\sl Algebraic and topological theories} Nagata, M. (ed.) et al., Papers from the symposium dedicated to the memory of Dr. Takehiko Miyata held in Kinosaki, October 30-November 9, 1984. Tokyo: Kinokuniya Company Ltd. 496-545 (1986) Murre, J.P.: {\em Classification of Fano threefolds according to Fano and Iskovskih}, in {\sl Algebraic threefolds}, Proc. 2nd 1981 Sess. C.I.M.E., Varenna/Italy 1981, Lect. Notes Math. 947, 35-92 (1982). Nadel, A. M.: {\em The boundedness of degree of Fano varieties with Picard number one}, J. Am. Math. Soc. 4, No.4, 681-692 (1991). Nakagawa, Y.: {\em A letter to V. Batyrev}, November 13, 1991. Nakagawa, Y.: {\em Einstein-Kaehler toric Fano fourfolds}, Tohoku Math. J., II. Ser. 45, No.2, 297-310 (1993). Nakagawa, Y.: {\em Classification of Einstein-Kaehler toric Fano fourfolds}, Tohoku Math. J., II. Ser. 46, No.1, 125-133 (1994). Oda, T.: {\em Convex bodies and algebraic geometry. An introduction to the theory of toric varieties}, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Bd. 15. Berlin, Springer-Verlag (1988). Reid, M.: {\em Decomposition of toric morphisms}, in {\sl Arithmetic and geometry}, Vol. II: {\sl Geometry}, Prog. Math. 36, 395-418 (1983) Voskresenskij, V.E.; Klyachko A.A.: {\em Toroidal Fano varieties and root systems}, Math. USSR-Izv. 24, 221-244 (1985) Watanabe, K.; Watanabe, M: {\em The classification of Fano 3-folds with torus embeddings}, Tokyo J. Math. 5, 37-48 (1982)