Torus Knot Splice Base
[[Image:Data:Torus Knot Splice Base/Previous Knot.{{{ext}}}|80px|link=Data:Torus Knot Splice Base/Previous Knot]] |
[[Image:Data:Torus Knot Splice Base/Next Knot.{{{ext}}}|80px|link=Data:Torus Knot Splice Base/Next Knot]] |
Visit [<*KnotilusURL[K]<>" "<>ThisKnot*>'s page] at Knotilus!
Visit <*m*>.<*n*>.html <*ThisKnot*>'s page at the original Knot Atlas!
Knot presentations
Planar diagram presentation | <*PD[K]*> |
Gauss code | <*List @@ GaussCode[K]*> |
Dowker-Thistlethwaite code | <*StringReplace[StringTake[ToString[DTCode[K]], {8, -2}], ","->""]*> |
Polynomial invariants
Polynomial invariants
Vassiliev invariants
V2 and V3 | <*{Vassiliev[2][K], Vassiliev[3][K]}*>) |
Khovanov Homology. The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where <*s=KnotSignature[K]*> is the signature of <*ThisKnot*>. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= </font> |
<< KnotTheory` |
<*KnotTheoryWelcomeMessage[]*> |