T(17,2)
[[Image:T(8,3).{{{ext}}}|80px|link=T(8,3)]] |
[[Image:T(19,2).{{{ext}}}|80px|link=T(19,2)]] |
Visit T(17,2)'s page at Knotilus!
Visit T(17,2)'s page at the original Knot Atlas!
Knot presentations
Planar diagram presentation | X15,33,16,32 X33,17,34,16 X17,1,18,34 X1,19,2,18 X19,3,20,2 X3,21,4,20 X21,5,22,4 X5,23,6,22 X23,7,24,6 X7,25,8,24 X25,9,26,8 X9,27,10,26 X27,11,28,10 X11,29,12,28 X29,13,30,12 X13,31,14,30 X31,15,32,14 |
Gauss code | {-4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 1, -2, 3} |
Dowker-Thistlethwaite code | 18 20 22 24 26 28 30 32 34 2 4 6 8 10 12 14 16 |
Polynomial invariants
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(17,2)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 17, 16 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3 | {0, 204}) |
Khovanov Homology. The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 16 is the signature of T(17,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | χ | |||||||||
51 | 1 | -1 | ||||||||||||||||||||||||||
49 | 0 | |||||||||||||||||||||||||||
47 | 1 | 1 | 0 | |||||||||||||||||||||||||
45 | 0 | |||||||||||||||||||||||||||
43 | 1 | 1 | 0 | |||||||||||||||||||||||||
41 | 0 | |||||||||||||||||||||||||||
39 | 1 | 1 | 0 | |||||||||||||||||||||||||
37 | 0 | |||||||||||||||||||||||||||
35 | 1 | 1 | 0 | |||||||||||||||||||||||||
33 | 0 | |||||||||||||||||||||||||||
31 | 1 | 1 | 0 | |||||||||||||||||||||||||
29 | 0 | |||||||||||||||||||||||||||
27 | 1 | 1 | 0 | |||||||||||||||||||||||||
25 | 0 | |||||||||||||||||||||||||||
23 | 1 | 1 | 0 | |||||||||||||||||||||||||
21 | 0 | |||||||||||||||||||||||||||
19 | 1 | 1 | ||||||||||||||||||||||||||
17 | 1 | 1 | ||||||||||||||||||||||||||
15 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Include[ColouredJonesM.mhtml]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 19, 2005, 13:11:25)... | |
In[2]:= | Crossings[TorusKnot[17, 2]] |
Out[2]= | 17 |
In[3]:= | PD[TorusKnot[17, 2]] |
Out[3]= | PD[X[15, 33, 16, 32], X[33, 17, 34, 16], X[17, 1, 18, 34],X[1, 19, 2, 18], X[19, 3, 20, 2], X[3, 21, 4, 20], X[21, 5, 22, 4], X[5, 23, 6, 22], X[23, 7, 24, 6], X[7, 25, 8, 24], X[25, 9, 26, 8], X[9, 27, 10, 26], X[27, 11, 28, 10], X[11, 29, 12, 28],X[29, 13, 30, 12], X[13, 31, 14, 30], X[31, 15, 32, 14]] |
In[4]:= | GaussCode[TorusKnot[17, 2]] |
Out[4]= | GaussCode[-4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -1,2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 1,-2, 3] |
In[5]:= | BR[TorusKnot[17, 2]] |
Out[5]= | BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}] |
In[6]:= | alex = Alexander[TorusKnot[17, 2]][t] |
Out[6]= | -8 -7 -6 -5 -4 -3 -2 1 2 3 4 |
In[7]:= | Conway[TorusKnot[17, 2]][z] |
Out[7]= | 2 4 6 8 10 12 14 16 1 + 36 z + 210 z + 462 z + 495 z + 286 z + 91 z + 15 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[17, 2]], KnotSignature[TorusKnot[17, 2]]} |
Out[9]= | {17, 16} |
In[10]:= | J=Jones[TorusKnot[17, 2]][q] |
Out[10]= | 8 10 11 12 13 14 15 16 17 18 19 20 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[17, 2]][q] |
Out[12]= | 30 32 34 36 38 66 68 70 q + q + 2 q + q + q - q - q - q |
In[13]:= | Kauffman[TorusKnot[17, 2]][a, z] |
Out[13]= | 28 9 z z z z z z z z 8 z z |
In[14]:= | {Vassiliev[2][TorusKnot[17, 2]], Vassiliev[3][TorusKnot[17, 2]]} |
Out[14]= | {0, 204} |
In[15]:= | Kh[TorusKnot[17, 2]][q, t] |
Out[15]= | 15 17 19 2 23 3 23 4 27 5 27 6 31 7 |