Torus Knot Splice Base
[[Image:Data:Torus Knot Splice Base/Previous Knot.{{{ext}}}|80px|link=Data:Torus Knot Splice Base/Previous Knot]] |
[[Image:Data:Torus Knot Splice Base/Next Knot.{{{ext}}}|80px|link=Data:Torus Knot Splice Base/Next Knot]] |
[[Image:<*ThisKnot*>.jpg]] | Visit [<*KnotilusURL[K]<>" "<>ThisKnot*>'s page] at Knotilus!
Visit <*m*>.<*n*>.html <*ThisKnot*>'s page at the original Knot Atlas! {{<*ThisKnot*> Quick Notes}} |
{{<*ThisKnot*> Further Notes and Views}}
Knot presentations
Planar diagram presentation | <*PD[K]*> |
Gauss code | <*List @@ GaussCode[K]*> |
Dowker-Thistlethwaite code | <*StringReplace[StringTake[ToString[DTCode[K]], {8, -2}], ","->""]*> |
Polynomial invariants
Polynomial invariants
Vassiliev invariants
V2 and V3 | <*{Vassiliev[2][K], Vassiliev[3][K]}*>) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where <*s=KnotSignature[K]*> is the signature of <*ThisKnot*>. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
<*InOut["Crossings[``]", K]*> <*InOut["PD[``]", K]*> <*InOut["GaussCode[``]", K]*> <*InOut["BR[``]", K]*> <*InOut["alex = Alexander[``][t]", K]*> <*InOut["Conway[``][z]", K]*> <*InOut["Select[AllKnots[], (alex === Alexander[#][t])&]"]*> <*InOut["{KnotDet[`1`], KnotSignature[`1`]}", K]*> <*InOut["J=Jones[``][q]", K]*> <*InOut[
"Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]"
]*> <* If[Crossings[K]<=18, Include["ColouredJonesM.mhtml"] ,""] *> <*InOut["A2Invariant[``][q]", K]*> <*InOut["Kauffman[``][a, z]", K]*> <*InOut["{Vassiliev[2][`1`], Vassiliev[3][`1`]}", K ]*> <*InOut["Kh[``][q, t]", K]*>
In[1]:= |
<< KnotTheory` |
<*InOut[1]; KnotTheoryWelcomeMessage[]*> |