T(7,6)

From Knot Atlas
Revision as of 21:34, 26 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search


[[Image:T(17,3).{{{ext}}}|80px|link=T(17,3)]]

T(17,3)

[[Image:T(35,2).{{{ext}}}|80px|link=T(35,2)]]

T(35,2)

T(7,6).jpg Visit T(7,6)'s page at Knotilus!

Visit T(7,6)'s page at the original Knot Atlas!

Template:T(7,6) Quick Notes


Template:T(7,6) Further Notes and Views

Knot presentations

Planar diagram presentation X53,65,54,64 X42,66,43,65 X31,67,32,66 X20,68,21,67 X9,69,10,68 X43,55,44,54 X32,56,33,55 X21,57,22,56 X10,58,11,57 X69,59,70,58 X33,45,34,44 X22,46,23,45 X11,47,12,46 X70,48,1,47 X59,49,60,48 X23,35,24,34 X12,36,13,35 X1,37,2,36 X60,38,61,37 X49,39,50,38 X13,25,14,24 X2,26,3,25 X61,27,62,26 X50,28,51,27 X39,29,40,28 X3,15,4,14 X62,16,63,15 X51,17,52,16 X40,18,41,17 X29,19,30,18 X63,5,64,4 X52,6,53,5 X41,7,42,6 X30,8,31,7 X19,9,20,8
Gauss code {-18, -22, -26, 31, 32, 33, 34, 35, -5, -9, -13, -17, -21, 26, 27, 28, 29, 30, -35, -4, -8, -12, -16, 21, 22, 23, 24, 25, -30, -34, -3, -7, -11, 16, 17, 18, 19, 20, -25, -29, -33, -2, -6, 11, 12, 13, 14, 15, -20, -24, -28, -32, -1, 6, 7, 8, 9, 10, -15, -19, -23, -27, -31, 1, 2, 3, 4, 5, -10, -14}
Dowker-Thistlethwaite code 36 14 -52 -30 68 46 24 -62 -40 8 56 34 -2 -50 18 66 44 -12 -60 28 6 54 -22 -70 38 16 64 -32 -10 48 26 4 -42 -20 58

Polynomial invariants

Polynomial invariants

Alexander polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^{15}-t^{14}+t^9-t^7+t^3-1+ t^{-3} - t^{-7} + t^{-9} - t^{-14} + t^{-15} }
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 7, 18 }
Jones polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{26}-q^{24}-q^{22}+q^{21}+q^{19}+q^{17}+q^{15}}
HOMFLY-PT polynomial (db, data sources) Data:T(7,6)/HOMFLYPT Polynomial
Kauffman polynomial (db, data sources) Data:T(7,6)/Kauffman Polynomial
The A2 invariant Data:T(7,6)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(7,6)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3 {0, 490})

Khovanov Homology

The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 18 is the signature of T(7,6). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
012345678910111213141516171819χ
57                1  10
55                11  0
53              12 11 -1
51            11 21   -1
49             31 1   -1
47           31 1     -1
45         2 12       -1
43       1 12         0
41     1 12 1         1
39     11 1           1
37   11 1             1
35    1               1
33  1                 1
311                   1
291                   1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 19, 2005, 13:11:25)...
In[2]:=
Crossings[TorusKnot[7, 6]]
Out[2]=   
35
In[3]:=
PD[TorusKnot[7, 6]]
Out[3]=   
PD[X[53, 65, 54, 64], X[42, 66, 43, 65], X[31, 67, 32, 66], 
 X[20, 68, 21, 67], X[9, 69, 10, 68], X[43, 55, 44, 54], 

 X[32, 56, 33, 55], X[21, 57, 22, 56], X[10, 58, 11, 57], 

 X[69, 59, 70, 58], X[33, 45, 34, 44], X[22, 46, 23, 45], 

 X[11, 47, 12, 46], X[70, 48, 1, 47], X[59, 49, 60, 48], 

 X[23, 35, 24, 34], X[12, 36, 13, 35], X[1, 37, 2, 36], 

 X[60, 38, 61, 37], X[49, 39, 50, 38], X[13, 25, 14, 24], 

 X[2, 26, 3, 25], X[61, 27, 62, 26], X[50, 28, 51, 27], 

 X[39, 29, 40, 28], X[3, 15, 4, 14], X[62, 16, 63, 15], 

 X[51, 17, 52, 16], X[40, 18, 41, 17], X[29, 19, 30, 18], 

 X[63, 5, 64, 4], X[52, 6, 53, 5], X[41, 7, 42, 6], X[30, 8, 31, 7], 

X[19, 9, 20, 8]]
In[4]:=
GaussCode[TorusKnot[7, 6]]
Out[4]=   
GaussCode[-18, -22, -26, 31, 32, 33, 34, 35, -5, -9, -13, -17, -21, 26, 
 27, 28, 29, 30, -35, -4, -8, -12, -16, 21, 22, 23, 24, 25, -30, -34, 

 -3, -7, -11, 16, 17, 18, 19, 20, -25, -29, -33, -2, -6, 11, 12, 13, 

 14, 15, -20, -24, -28, -32, -1, 6, 7, 8, 9, 10, -15, -19, -23, -27, 

-31, 1, 2, 3, 4, 5, -10, -14]
In[5]:=
BR[TorusKnot[7, 6]]
Out[5]=   
BR[6, {1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 
   2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5}]
In[6]:=
alex = Alexander[TorusKnot[7, 6]][t]
Out[6]=   
      -15    -14    -9    -7    -3    3    7    9    14    15
-1 + t    - t    + t   - t   + t   + t  - t  + t  - t   + t
In[7]:=
Conway[TorusKnot[7, 6]][z]
Out[7]=   
        2         4          6          8           10           12

1 + 70 z + 1365 z + 11649 z + 52844 z + 142208 z + 244074 z +

         14           16           18          20          22
 281144 z   + 224826 z   + 127282 z   + 51359 z   + 14674 z   + 

       24        26       28    30
2900 z + 377 z + 29 z + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{}
In[9]:=
{KnotDet[TorusKnot[7, 6]], KnotSignature[TorusKnot[7, 6]]}
Out[9]=   
{7, 18}
In[10]:=
J=Jones[TorusKnot[7, 6]][q]
Out[10]=   
 15    17    19    21    22    24    26
q   + q   + q   + q   - q   - q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{}
In[12]:=
A2Invariant[TorusKnot[7, 6]][q]
Out[12]=   
NotAvailable
In[13]:=
Kauffman[TorusKnot[7, 6]][a, z]
Out[13]=   
NotAvailable
In[14]:=
{Vassiliev[2][TorusKnot[7, 6]], Vassiliev[3][TorusKnot[7, 6]]}
Out[14]=   
{0, 490}
In[15]:=
Kh[TorusKnot[7, 6]][q, t]
Out[15]=   
 29    31    33  2    37  3    35  4    37  4    39  5    41  5

q + q + q t + q t + q t + q t + q t + q t +

  37  6    39  6    41  7    43  7    39  8      41  8    43  9
 q   t  + q   t  + q   t  + q   t  + q   t  + 2 q   t  + q   t  + 

    45  9    41  10      43  10    45  11      47  11      45  12
 2 q   t  + q   t   + 2 q   t   + q   t   + 3 q   t   + 2 q   t   + 

  47  12    51  12      49  13    51  13    47  14    49  14
 q   t   + q   t   + 3 q   t   + q   t   + q   t   + q   t   + 

  53  14      51  15      53  15    49  16    51  16    55  16
 q   t   + 2 q   t   + 2 q   t   + q   t   + q   t   + q   t   + 

  57  16    53  17    55  17    53  18    57  19
q t + q t + q t + q t + q t