T(7,6)
[[Image:T(17,3).{{{ext}}}|80px|link=T(17,3)]] |
[[Image:T(35,2).{{{ext}}}|80px|link=T(35,2)]] |
Visit T(7,6)'s page at Knotilus!
Visit T(7,6)'s page at the original Knot Atlas! |
Template:T(7,6) Further Notes and Views
Knot presentations
Planar diagram presentation | X53,65,54,64 X42,66,43,65 X31,67,32,66 X20,68,21,67 X9,69,10,68 X43,55,44,54 X32,56,33,55 X21,57,22,56 X10,58,11,57 X69,59,70,58 X33,45,34,44 X22,46,23,45 X11,47,12,46 X70,48,1,47 X59,49,60,48 X23,35,24,34 X12,36,13,35 X1,37,2,36 X60,38,61,37 X49,39,50,38 X13,25,14,24 X2,26,3,25 X61,27,62,26 X50,28,51,27 X39,29,40,28 X3,15,4,14 X62,16,63,15 X51,17,52,16 X40,18,41,17 X29,19,30,18 X63,5,64,4 X52,6,53,5 X41,7,42,6 X30,8,31,7 X19,9,20,8 |
Gauss code | {-18, -22, -26, 31, 32, 33, 34, 35, -5, -9, -13, -17, -21, 26, 27, 28, 29, 30, -35, -4, -8, -12, -16, 21, 22, 23, 24, 25, -30, -34, -3, -7, -11, 16, 17, 18, 19, 20, -25, -29, -33, -2, -6, 11, 12, 13, 14, 15, -20, -24, -28, -32, -1, 6, 7, 8, 9, 10, -15, -19, -23, -27, -31, 1, 2, 3, 4, 5, -10, -14} |
Dowker-Thistlethwaite code | 36 14 -52 -30 68 46 24 -62 -40 8 56 34 -2 -50 18 66 44 -12 -60 28 6 54 -22 -70 38 16 64 -32 -10 48 26 4 -42 -20 58 |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(7,6)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 7, 18 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Data:T(7,6)/HOMFLYPT Polynomial |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:T(7,6)/Kauffman Polynomial |
Vassiliev invariants
V2 and V3 | {0, 490} |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 18 is the signature of T(7,6). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | χ | |||||||||
57 | 1 | 1 | 0 | |||||||||||||||||||||||||||
55 | 1 | 1 | 0 | |||||||||||||||||||||||||||
53 | 1 | 2 | 1 | 1 | -1 | |||||||||||||||||||||||||
51 | 1 | 1 | 2 | 1 | -1 | |||||||||||||||||||||||||
49 | 3 | 1 | 1 | -1 | ||||||||||||||||||||||||||
47 | 3 | 1 | 1 | -1 | ||||||||||||||||||||||||||
45 | 2 | 1 | 2 | -1 | ||||||||||||||||||||||||||
43 | 1 | 1 | 2 | 0 | ||||||||||||||||||||||||||
41 | 1 | 1 | 2 | 1 | 1 | |||||||||||||||||||||||||
39 | 1 | 1 | 1 | 1 | ||||||||||||||||||||||||||
37 | 1 | 1 | 1 | 1 | ||||||||||||||||||||||||||
35 | 1 | 1 | ||||||||||||||||||||||||||||
33 | 1 | 1 | ||||||||||||||||||||||||||||
31 | 1 | 1 | ||||||||||||||||||||||||||||
29 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 19, 2005, 13:11:25)... | |
In[2]:= | Crossings[TorusKnot[7, 6]] |
Out[2]= | 35 |
In[3]:= | PD[TorusKnot[7, 6]] |
Out[3]= | PD[X[53, 65, 54, 64], X[42, 66, 43, 65], X[31, 67, 32, 66],X[20, 68, 21, 67], X[9, 69, 10, 68], X[43, 55, 44, 54], X[32, 56, 33, 55], X[21, 57, 22, 56], X[10, 58, 11, 57], X[69, 59, 70, 58], X[33, 45, 34, 44], X[22, 46, 23, 45], X[11, 47, 12, 46], X[70, 48, 1, 47], X[59, 49, 60, 48], X[23, 35, 24, 34], X[12, 36, 13, 35], X[1, 37, 2, 36], X[60, 38, 61, 37], X[49, 39, 50, 38], X[13, 25, 14, 24], X[2, 26, 3, 25], X[61, 27, 62, 26], X[50, 28, 51, 27], X[39, 29, 40, 28], X[3, 15, 4, 14], X[62, 16, 63, 15], X[51, 17, 52, 16], X[40, 18, 41, 17], X[29, 19, 30, 18], X[63, 5, 64, 4], X[52, 6, 53, 5], X[41, 7, 42, 6], X[30, 8, 31, 7],X[19, 9, 20, 8]] |
In[4]:= | GaussCode[TorusKnot[7, 6]] |
Out[4]= | GaussCode[-18, -22, -26, 31, 32, 33, 34, 35, -5, -9, -13, -17, -21, 26,27, 28, 29, 30, -35, -4, -8, -12, -16, 21, 22, 23, 24, 25, -30, -34, -3, -7, -11, 16, 17, 18, 19, 20, -25, -29, -33, -2, -6, 11, 12, 13, 14, 15, -20, -24, -28, -32, -1, 6, 7, 8, 9, 10, -15, -19, -23, -27,-31, 1, 2, 3, 4, 5, -10, -14] |
In[5]:= | BR[TorusKnot[7, 6]] |
Out[5]= | BR[6, {1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5}] |
In[6]:= | alex = Alexander[TorusKnot[7, 6]][t] |
Out[6]= | -15 -14 -9 -7 -3 3 7 9 14 15 -1 + t - t + t - t + t + t - t + t - t + t |
In[7]:= | Conway[TorusKnot[7, 6]][z] |
Out[7]= | 2 4 6 8 10 12 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[7, 6]], KnotSignature[TorusKnot[7, 6]]} |
Out[9]= | {7, 18} |
In[10]:= | J=Jones[TorusKnot[7, 6]][q] |
Out[10]= | 15 17 19 21 22 24 26 q + q + q + q - q - q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[7, 6]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[7, 6]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[7, 6]], Vassiliev[3][TorusKnot[7, 6]]} |
Out[14]= | {0, 490} |
In[15]:= | Kh[TorusKnot[7, 6]][q, t] |
Out[15]= | 29 31 33 2 37 3 35 4 37 4 39 5 41 5 |