T(3,2)

From Knot Atlas
Revision as of 18:28, 26 August 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search


[[Image:T(3,2).{{{ext}}}|80px|link=T(3,2)]]

T(3,2)

[[Image:T(5,2).{{{ext}}}|80px|link=T(5,2)]]

T(5,2)

Visit T(3,2)'s page at Knotilus!

Visit T(3,2)'s page at the original Knot Atlas!

Knot presentations

Planar diagram presentation X3146 X1524 X5362
Gauss code {-2, 3, -1, 2, -3, 1}
Dowker-Thistlethwaite code 4 6 2

Polynomial invariants

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 3, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:T(3,2)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(3,2)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3 {0, 1})

Khovanov Homology. The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of T(3,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
0123χ
9   1-1
7    0
5  1 1
31   1
11   1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Include[ColouredJonesM.mhtml]

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 19, 2005, 13:11:25)...
In[2]:=
Crossings[TorusKnot[3, 2]]
Out[2]=   
3
In[3]:=
PD[TorusKnot[3, 2]]
Out[3]=   
PD[X[3, 1, 4, 6], X[1, 5, 2, 4], X[5, 3, 6, 2]]
In[4]:=
GaussCode[TorusKnot[3, 2]]
Out[4]=   
GaussCode[-2, 3, -1, 2, -3, 1]
In[5]:=
BR[TorusKnot[3, 2]]
Out[5]=   
BR[2, {1, 1, 1}]
In[6]:=
alex = Alexander[TorusKnot[3, 2]][t]
Out[6]=   
     1

-1 + - + t

t
In[7]:=
Conway[TorusKnot[3, 2]][z]
Out[7]=   
     2
1 + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[3, 1]}
In[9]:=
{KnotDet[TorusKnot[3, 2]], KnotSignature[TorusKnot[3, 2]]}
Out[9]=   
{3, 2}
In[10]:=
J=Jones[TorusKnot[3, 2]][q]
Out[10]=   
     3    4
q + q  - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[3, 1]}
In[12]:=
A2Invariant[TorusKnot[3, 2]][q]
Out[12]=   
 2    4      6    8    12    14
q  + q  + 2 q  + q  - q   - q
In[13]:=
Kauffman[TorusKnot[3, 2]][a, z]
Out[13]=   
                       2    2
 -4   2    z    z    z    z

-a - -- + -- + -- + -- + --

       2    5    3    4    2
a a a a a
In[14]:=
{Vassiliev[2][TorusKnot[3, 2]], Vassiliev[3][TorusKnot[3, 2]]}
Out[14]=   
{0, 1}
In[15]:=
Kh[TorusKnot[3, 2]][q, t]
Out[15]=   
     3    5  2    9  3
q + q  + q  t  + q  t