T(3,2)
From Knot Atlas
Jump to navigationJump to search
[[Image:T(3,2).{{{ext}}}|80px|link=T(3,2)]] |
[[Image:T(5,2).{{{ext}}}|80px|link=T(5,2)]] |
Visit T(3,2)'s page at Knotilus!
Visit T(3,2)'s page at the original Knot Atlas!
Knot presentations
Planar diagram presentation | X3146 X1524 X5362 |
Gauss code | {-2, 3, -1, 2, -3, 1} |
Dowker-Thistlethwaite code | 4 6 2 |
Polynomial invariants
Polynomial invariants
Vassiliev invariants
V2 and V3 | {0, 1}) |
Khovanov Homology. The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of T(3,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | χ | |||||||||
9 | 1 | -1 | ||||||||||||
7 | 0 | |||||||||||||
5 | 1 | 1 | ||||||||||||
3 | 1 | 1 | ||||||||||||
1 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Include[ColouredJonesM.mhtml]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 19, 2005, 13:11:25)... | |
In[2]:= | Crossings[TorusKnot[3, 2]] |
Out[2]= | 3 |
In[3]:= | PD[TorusKnot[3, 2]] |
Out[3]= | PD[X[3, 1, 4, 6], X[1, 5, 2, 4], X[5, 3, 6, 2]] |
In[4]:= | GaussCode[TorusKnot[3, 2]] |
Out[4]= | GaussCode[-2, 3, -1, 2, -3, 1] |
In[5]:= | BR[TorusKnot[3, 2]] |
Out[5]= | BR[2, {1, 1, 1}] |
In[6]:= | alex = Alexander[TorusKnot[3, 2]][t] |
Out[6]= | 1 |
In[7]:= | Conway[TorusKnot[3, 2]][z] |
Out[7]= | 2 1 + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[3, 1]} |
In[9]:= | {KnotDet[TorusKnot[3, 2]], KnotSignature[TorusKnot[3, 2]]} |
Out[9]= | {3, 2} |
In[10]:= | J=Jones[TorusKnot[3, 2]][q] |
Out[10]= | 3 4 q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[3, 1]} |
In[12]:= | A2Invariant[TorusKnot[3, 2]][q] |
Out[12]= | 2 4 6 8 12 14 q + q + 2 q + q - q - q |
In[13]:= | Kauffman[TorusKnot[3, 2]][a, z] |
Out[13]= | 2 2-4 2 z z z z |
In[14]:= | {Vassiliev[2][TorusKnot[3, 2]], Vassiliev[3][TorusKnot[3, 2]]} |
Out[14]= | {0, 1} |
In[15]:= | Kh[TorusKnot[3, 2]][q, t] |
Out[15]= | 3 5 2 9 3 q + q + q t + q t |