[[Image:T(3,2).{{{ext}}}|80px|link=T(3,2)]]
T(3,2)
|
[[Image:T(5,2).{{{ext}}}|80px|link=T(5,2)]]
T(5,2)
|
Visit T(3,2)'s page at Knotilus!
Visit T(3,2)'s page at the original Knot Atlas!
Knot presentations
Polynomial invariants
Polynomial invariants
Further Quantum Invariants
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot
5_2) as the notebook
PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["T(3,2)"];
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
|
Out[5]=
|
|
In[6]:=
|
Alexander[K, 2][t]
|
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
|
In[10]:=
|
Kauffman[K][a, z]
|
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
|
Khovanov Homology. The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of T(3,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | χ |
9 | | | | 1 | -1 |
7 | | | | | 0 |
5 | | | 1 | | 1 |
3 | 1 | | | | 1 |
1 | 1 | | | | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Include[ColouredJonesM.mhtml]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 19, 2005, 13:11:25)... |
In[2]:= | Crossings[TorusKnot[3, 2]] |
Out[2]= | 3 |
In[3]:= | PD[TorusKnot[3, 2]] |
Out[3]= | PD[X[3, 1, 4, 6], X[1, 5, 2, 4], X[5, 3, 6, 2]] |
In[4]:= | GaussCode[TorusKnot[3, 2]] |
Out[4]= | GaussCode[-2, 3, -1, 2, -3, 1] |
In[5]:= | BR[TorusKnot[3, 2]] |
Out[5]= | BR[2, {1, 1, 1}] |
In[6]:= | alex = Alexander[TorusKnot[3, 2]][t] |
Out[6]= | 1
-1 + - + t
t |
In[7]:= | Conway[TorusKnot[3, 2]][z] |
Out[7]= | 2
1 + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[3, 1]} |
In[9]:= | {KnotDet[TorusKnot[3, 2]], KnotSignature[TorusKnot[3, 2]]} |
Out[9]= | {3, 2} |
In[10]:= | J=Jones[TorusKnot[3, 2]][q] |
Out[10]= | 3 4
q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[3, 1]} |
In[12]:= | A2Invariant[TorusKnot[3, 2]][q] |
Out[12]= | 2 4 6 8 12 14
q + q + 2 q + q - q - q |
In[13]:= | Kauffman[TorusKnot[3, 2]][a, z] |
Out[13]= | 2 2
-4 2 z z z z
-a - -- + -- + -- + -- + --
2 5 3 4 2
a a a a a |
In[14]:= | {Vassiliev[2][TorusKnot[3, 2]], Vassiliev[3][TorusKnot[3, 2]]} |
Out[14]= | {0, 1} |
In[15]:= | Kh[TorusKnot[3, 2]][q, t] |
Out[15]= | 3 5 2 9 3
q + q + q t + q t |