T(5,3)

From Knot Atlas
Revision as of 18:35, 26 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search


[[Image:T(9,2).{{{ext}}}|80px|link=T(9,2)]]

T(9,2)

[[Image:T(11,2).{{{ext}}}|80px|link=T(11,2)]]

T(11,2)

Visit T(5,3)'s page at Knotilus!

Visit T(5,3)'s page at the original Knot Atlas!

Knot presentations

Planar diagram presentation X7,1,8,20 X14,2,15,1 X15,9,16,8 X2,10,3,9 X3,17,4,16 X10,18,11,17 X11,5,12,4 X18,6,19,5 X19,13,20,12 X6,14,7,13
Gauss code {2, -4, -5, 7, 8, -10, -1, 3, 4, -6, -7, 9, 10, -2, -3, 5, 6, -8, -9, 1}
Dowker-Thistlethwaite code 14 -16 18 -20 2 -4 6 -8 10 -12

Polynomial invariants

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 1, 8 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:T(5,3)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(5,3)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3 {0, 20})

Khovanov Homology. The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 8 is the signature of T(5,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
01234567χ
21       1-1
19     1  -1
17     11 0
15   11   0
13    1   1
11  1     1
91       1
71       1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Include[ColouredJonesM.mhtml]

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 19, 2005, 13:11:25)...
In[2]:=
Crossings[TorusKnot[5, 3]]
Out[2]=   
10
In[3]:=
PD[TorusKnot[5, 3]]
Out[3]=   
PD[X[7, 1, 8, 20], X[14, 2, 15, 1], X[15, 9, 16, 8], X[2, 10, 3, 9], 
 X[3, 17, 4, 16], X[10, 18, 11, 17], X[11, 5, 12, 4], X[18, 6, 19, 5], 

X[19, 13, 20, 12], X[6, 14, 7, 13]]
In[4]:=
GaussCode[TorusKnot[5, 3]]
Out[4]=   
GaussCode[2, -4, -5, 7, 8, -10, -1, 3, 4, -6, -7, 9, 10, -2, -3, 5, 6, 
  -8, -9, 1]
In[5]:=
BR[TorusKnot[5, 3]]
Out[5]=   
BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2}]
In[6]:=
alex = Alexander[TorusKnot[5, 3]][t]
Out[6]=   
      -4    -3   1        3    4

-1 + t - t + - + t - t + t

t
In[7]:=
Conway[TorusKnot[5, 3]][z]
Out[7]=   
       2       4      6    8
1 + 8 z  + 14 z  + 7 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 124]}
In[9]:=
{KnotDet[TorusKnot[5, 3]], KnotSignature[TorusKnot[5, 3]]}
Out[9]=   
{1, 8}
In[10]:=
J=Jones[TorusKnot[5, 3]][q]
Out[10]=   
 4    6    10
q  + q  - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[10, 124]}
In[12]:=
A2Invariant[TorusKnot[5, 3]][q]
Out[12]=   
 14    16      18      20      22    24      28      30      32    34

q + q + 2 q + 2 q + 2 q + q - 2 q - 2 q - 2 q - q +

  40
q
In[13]:=
Kauffman[TorusKnot[5, 3]][a, z]
Out[13]=   
                              2        2       2       3       3
2     8    7    8 z   8 z   z     22 z    21 z    14 z    14 z

--- + --- + -- - --- - --- - --- - ----- - ----- + ----- + ----- +

12    10    8    11    9     12     10      8       11      9

a a a a a a a a a a

     4       4      5      5      6      6    7     7    8     8
 21 z    21 z    7 z    7 z    8 z    8 z    z     z    z     z
 ----- + ----- - ---- - ---- - ---- - ---- + --- + -- + --- + --
   10      8      11      9     10      8     11    9    10    8
a a a a a a a a a a
In[14]:=
{Vassiliev[2][TorusKnot[5, 3]], Vassiliev[3][TorusKnot[5, 3]]}
Out[14]=   
{0, 20}
In[15]:=
Kh[TorusKnot[5, 3]][q, t]
Out[15]=   
 7    9    11  2    15  3    13  4    15  4    17  5    19  5

q + q + q t + q t + q t + q t + q t + q t +

  17  6    21  7
q t + q t