T(11,3)
[[Image:T(21,2).{{{ext}}}|80px|link=T(21,2)]] |
[[Image:T(23,2).{{{ext}}}|80px|link=T(23,2)]] |
Visit T(11,3)'s page at Knotilus!
Visit T(11,3)'s page at the original Knot Atlas!
Knot presentations
Planar diagram presentation | X7,37,8,36 X22,38,23,37 X23,9,24,8 X38,10,39,9 X39,25,40,24 X10,26,11,25 X11,41,12,40 X26,42,27,41 X27,13,28,12 X42,14,43,13 X43,29,44,28 X14,30,15,29 X15,1,16,44 X30,2,31,1 X31,17,32,16 X2,18,3,17 X3,33,4,32 X18,34,19,33 X19,5,20,4 X34,6,35,5 X35,21,36,20 X6,22,7,21 |
Gauss code | {14, -16, -17, 19, 20, -22, -1, 3, 4, -6, -7, 9, 10, -12, -13, 15, 16, -18, -19, 21, 22, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -21, 1, 2, -4, -5, 7, 8, -10, -11, 13} |
Dowker-Thistlethwaite code | 30 -32 34 -36 38 -40 42 -44 2 -4 6 -8 10 -12 14 -16 18 -20 22 -24 26 -28 |
Polynomial invariants
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(11,3)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 1, 16 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:T(11,3)/Kauffman Polynomial |
Vassiliev invariants
V2 and V3 | {0, 220}) |
Khovanov Homology. The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 16 is the signature of T(11,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | χ | |||||||||
45 | 1 | -1 | ||||||||||||||||||||||||
43 | 1 | -1 | ||||||||||||||||||||||||
41 | 1 | 1 | 0 | |||||||||||||||||||||||
39 | 1 | 1 | 0 | |||||||||||||||||||||||
37 | 1 | 1 | 0 | |||||||||||||||||||||||
35 | 1 | 1 | 0 | |||||||||||||||||||||||
33 | 1 | 1 | 0 | |||||||||||||||||||||||
31 | 1 | 1 | 0 | |||||||||||||||||||||||
29 | 1 | 1 | 0 | |||||||||||||||||||||||
27 | 1 | 1 | 0 | |||||||||||||||||||||||
25 | 1 | 1 | ||||||||||||||||||||||||
23 | 1 | 1 | ||||||||||||||||||||||||
21 | 1 | 1 | ||||||||||||||||||||||||
19 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 19, 2005, 13:11:25)... | |
In[2]:= | Crossings[TorusKnot[11, 3]] |
Out[2]= | 22 |
In[3]:= | PD[TorusKnot[11, 3]] |
Out[3]= | PD[X[7, 37, 8, 36], X[22, 38, 23, 37], X[23, 9, 24, 8],X[38, 10, 39, 9], X[39, 25, 40, 24], X[10, 26, 11, 25], X[11, 41, 12, 40], X[26, 42, 27, 41], X[27, 13, 28, 12], X[42, 14, 43, 13], X[43, 29, 44, 28], X[14, 30, 15, 29], X[15, 1, 16, 44], X[30, 2, 31, 1], X[31, 17, 32, 16], X[2, 18, 3, 17], X[3, 33, 4, 32], X[18, 34, 19, 33], X[19, 5, 20, 4],X[34, 6, 35, 5], X[35, 21, 36, 20], X[6, 22, 7, 21]] |
In[4]:= | GaussCode[TorusKnot[11, 3]] |
Out[4]= | GaussCode[14, -16, -17, 19, 20, -22, -1, 3, 4, -6, -7, 9, 10, -12, -13,15, 16, -18, -19, 21, 22, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17,18, -20, -21, 1, 2, -4, -5, 7, 8, -10, -11, 13] |
In[5]:= | BR[TorusKnot[11, 3]] |
Out[5]= | BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2}] |
In[6]:= | alex = Alexander[TorusKnot[11, 3]][t] |
Out[6]= | -10 -9 -7 -6 -4 -3 1 3 4 6 7 |
In[7]:= | Conway[TorusKnot[11, 3]][z] |
Out[7]= | 2 4 6 8 10 12 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[11, 3]], KnotSignature[TorusKnot[11, 3]]} |
Out[9]= | {1, 16} |
In[10]:= | J=Jones[TorusKnot[11, 3]][q] |
Out[10]= | 10 12 22 q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[11, 3]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[11, 3]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[11, 3]], Vassiliev[3][TorusKnot[11, 3]]} |
Out[14]= | {0, 220} |
In[15]:= | Kh[TorusKnot[11, 3]][q, t] |
Out[15]= | 19 21 23 2 27 3 25 4 27 4 29 5 31 5 |