T(13,3)
[[Image:T(25,2).{{{ext}}}|80px|link=T(25,2)]] |
[[Image:T(9,4).{{{ext}}}|80px|link=T(9,4)]] |
Visit T(13,3)'s page at Knotilus!
Visit T(13,3)'s page at the original Knot Atlas!
Knot presentations
Planar diagram presentation | X38,4,39,3 X21,5,22,4 X22,40,23,39 X5,41,6,40 X6,24,7,23 X41,25,42,24 X42,8,43,7 X25,9,26,8 X26,44,27,43 X9,45,10,44 X10,28,11,27 X45,29,46,28 X46,12,47,11 X29,13,30,12 X30,48,31,47 X13,49,14,48 X14,32,15,31 X49,33,50,32 X50,16,51,15 X33,17,34,16 X34,52,35,51 X17,1,18,52 X18,36,19,35 X1,37,2,36 X2,20,3,19 X37,21,38,20 |
Gauss code | {-24, -25, 1, 2, -4, -5, 7, 8, -10, -11, 13, 14, -16, -17, 19, 20, -22, -23, 25, 26, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -21, 23, 24, -26, -1, 3, 4, -6, -7, 9, 10, -12, -13, 15, 16, -18, -19, 21, 22} |
Dowker-Thistlethwaite code | 36 -38 40 -42 44 -46 48 -50 52 -2 4 -6 8 -10 12 -14 16 -18 20 -22 24 -26 28 -30 32 -34 |
Polynomial invariants
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(13,3)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 1, 16 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Data:T(13,3)/HOMFLYPT Polynomial |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:T(13,3)/Kauffman Polynomial |
Vassiliev invariants
V2 and V3 | {0, 364}) |
Khovanov Homology. The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 16 is the signature of T(13,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | χ | |||||||||
53 | 1 | -1 | ||||||||||||||||||||||||||
51 | 1 | -1 | ||||||||||||||||||||||||||
49 | 1 | 1 | 0 | |||||||||||||||||||||||||
47 | 1 | 1 | 0 | |||||||||||||||||||||||||
45 | 1 | 1 | 0 | |||||||||||||||||||||||||
43 | 1 | 1 | 0 | |||||||||||||||||||||||||
41 | 1 | 1 | 0 | |||||||||||||||||||||||||
39 | 1 | 1 | 0 | |||||||||||||||||||||||||
37 | 1 | 1 | 0 | |||||||||||||||||||||||||
35 | 1 | 1 | 0 | |||||||||||||||||||||||||
33 | 1 | 1 | 0 | |||||||||||||||||||||||||
31 | 1 | 1 | 0 | |||||||||||||||||||||||||
29 | 1 | 1 | ||||||||||||||||||||||||||
27 | 1 | 1 | ||||||||||||||||||||||||||
25 | 1 | 1 | ||||||||||||||||||||||||||
23 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 19, 2005, 13:11:25)... | |
In[2]:= | Crossings[TorusKnot[13, 3]] |
Out[2]= | 26 |
In[3]:= | PD[TorusKnot[13, 3]] |
Out[3]= | PD[X[38, 4, 39, 3], X[21, 5, 22, 4], X[22, 40, 23, 39],X[5, 41, 6, 40], X[6, 24, 7, 23], X[41, 25, 42, 24], X[42, 8, 43, 7], X[25, 9, 26, 8], X[26, 44, 27, 43], X[9, 45, 10, 44], X[10, 28, 11, 27], X[45, 29, 46, 28], X[46, 12, 47, 11], X[29, 13, 30, 12], X[30, 48, 31, 47], X[13, 49, 14, 48], X[14, 32, 15, 31], X[49, 33, 50, 32], X[50, 16, 51, 15], X[33, 17, 34, 16], X[34, 52, 35, 51], X[17, 1, 18, 52], X[18, 36, 19, 35], X[1, 37, 2, 36], X[2, 20, 3, 19],X[37, 21, 38, 20]] |
In[4]:= | GaussCode[TorusKnot[13, 3]] |
Out[4]= | GaussCode[-24, -25, 1, 2, -4, -5, 7, 8, -10, -11, 13, 14, -16, -17, 19,20, -22, -23, 25, 26, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -21, 23, 24, -26, -1, 3, 4, -6, -7, 9, 10, -12, -13, 15, 16,-18, -19, 21, 22] |
In[5]:= | BR[TorusKnot[13, 3]] |
Out[5]= | BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2}] |
In[6]:= | alex = Alexander[TorusKnot[13, 3]][t] |
Out[6]= | -12 -11 -9 -8 -6 -5 -3 -2 2 3 5 |
In[7]:= | Conway[TorusKnot[13, 3]][z] |
Out[7]= | 2 4 6 8 10 12 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[13, 3]], KnotSignature[TorusKnot[13, 3]]} |
Out[9]= | {1, 16} |
In[10]:= | J=Jones[TorusKnot[13, 3]][q] |
Out[10]= | 12 14 26 q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[13, 3]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[13, 3]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[13, 3]], Vassiliev[3][TorusKnot[13, 3]]} |
Out[14]= | {0, 364} |
In[15]:= | Kh[TorusKnot[13, 3]][q, t] |
Out[15]= | 23 25 27 2 31 3 29 4 31 4 33 5 35 5 |