T(5,3)
[[Image:T(9,2).{{{ext}}}|80px|link=T(9,2)]] |
[[Image:T(11,2).{{{ext}}}|80px|link=T(11,2)]] |
T(5,3)
Visit T(5,3)'s page at Knotilus!
Visit T(5,3)'s page at the original Knot Atlas! |
T(5,3) Further Notes and Views
Knot presentations
Planar diagram presentation | X7,1,8,20 X14,2,15,1 X15,9,16,8 X2,10,3,9 X3,17,4,16 X10,18,11,17 X11,5,12,4 X18,6,19,5 X19,13,20,12 X6,14,7,13 |
Gauss code | {2, -4, -5, 7, 8, -10, -1, 3, 4, -6, -7, 9, 10, -2, -3, 5, 6, -8, -9, 1} |
Dowker-Thistlethwaite code | 14 -16 18 -20 2 -4 6 -8 10 -12 |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(5,3)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 1, 8 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3 | {0, 20} |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 8 is the signature of T(5,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | χ | |||||||||
21 | 1 | -1 | ||||||||||||||||
19 | 1 | -1 | ||||||||||||||||
17 | 1 | 1 | 0 | |||||||||||||||
15 | 1 | 1 | 0 | |||||||||||||||
13 | 1 | 1 | ||||||||||||||||
11 | 1 | 1 | ||||||||||||||||
9 | 1 | 1 | ||||||||||||||||
7 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Include[ColouredJonesM.mhtml]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 19, 2005, 13:11:25)... | |
In[2]:= | Crossings[TorusKnot[5, 3]] |
Out[2]= | 10 |
In[3]:= | PD[TorusKnot[5, 3]] |
Out[3]= | PD[X[7, 1, 8, 20], X[14, 2, 15, 1], X[15, 9, 16, 8], X[2, 10, 3, 9],X[3, 17, 4, 16], X[10, 18, 11, 17], X[11, 5, 12, 4], X[18, 6, 19, 5],X[19, 13, 20, 12], X[6, 14, 7, 13]] |
In[4]:= | GaussCode[TorusKnot[5, 3]] |
Out[4]= | GaussCode[2, -4, -5, 7, 8, -10, -1, 3, 4, -6, -7, 9, 10, -2, -3, 5, 6, -8, -9, 1] |
In[5]:= | BR[TorusKnot[5, 3]] |
Out[5]= | BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2}] |
In[6]:= | alex = Alexander[TorusKnot[5, 3]][t] |
Out[6]= | -4 -3 1 3 4 |
In[7]:= | Conway[TorusKnot[5, 3]][z] |
Out[7]= | 2 4 6 8 1 + 8 z + 14 z + 7 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 124]} |
In[9]:= | {KnotDet[TorusKnot[5, 3]], KnotSignature[TorusKnot[5, 3]]} |
Out[9]= | {1, 8} |
In[10]:= | J=Jones[TorusKnot[5, 3]][q] |
Out[10]= | 4 6 10 q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 124]} |
In[12]:= | A2Invariant[TorusKnot[5, 3]][q] |
Out[12]= | 14 16 18 20 22 24 28 30 32 34 |
In[13]:= | Kauffman[TorusKnot[5, 3]][a, z] |
Out[13]= | 2 2 2 3 32 8 7 8 z 8 z z 22 z 21 z 14 z 14 z |
In[14]:= | {Vassiliev[2][TorusKnot[5, 3]], Vassiliev[3][TorusKnot[5, 3]]} |
Out[14]= | {0, 20} |
In[15]:= | Kh[TorusKnot[5, 3]][q, t] |
Out[15]= | 7 9 11 2 15 3 13 4 15 4 17 5 19 5 |