Link Splice Base
[[Image:Data:Link Splice Base/Previous Knot.gif|80px|link=Data:Link Splice Base/Previous Knot]] |
[[Image:Data:Link Splice Base/Next Knot.gif|80px|link=Data:Link Splice Base/Next Knot]] |
File:Link Splice Base.gif | Visit [<*KnotilusURL[K]*> Link Splice Base's page] at Knotilus!
Visit <*n*><*If [AlternatingQ[K,"a","n"]*><*k*>.html Link Splice Base's page] at the original Knot Atlas! |
Link Splice Base Quick Notes |
Link Splice Base Further Notes and Views
Knot presentations
Planar diagram presentation | Data:Link Splice Base/PD Presentation |
Gauss code | Data:Link Splice Base/Gauss Code |
Polynomial invariants
Vassiliev invariants
V2 and V3: | (Data:Link Splice Base/V 2, Data:Link Splice Base/V 3) |
V2,1 through V6,9: |
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where Data:Link Splice Base/Signature is the signature of Link Splice Base. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
<*InOut["Crossings[``]", K]*> <*InOut["PD[``]", K]*> <*InOut["GaussCode[``]", K]*> <*InOut["BR[``]", K]*> <*InOut["alex = Alexander[``][t]", K]*> <*InOut["Conway[``][z]", K]*> <*InOut["Select[AllKnots[], (alex === Alexander[#][t])&]"]*> <*InOut["{KnotDet[`1`], KnotSignature[`1`]}", K]*> <*InOut["J=Jones[``][q]", K]*> <*InOut[
"Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]"
]*> <* If[Crossings[K]<=18, Include["ColouredJonesM.mhtml"] ,""] *> <*InOut["A2Invariant[``][q]", K]*> <*InOut["Kauffman[``][a, z]", K]*> <*InOut["{Vassiliev[2][`1`], Vassiliev[3][`1`]}", K ]*> <*InOut["Kh[``][q, t]", K]*>
In[1]:= |
<< KnotTheory` |
<*InOut[1]; KnotTheoryWelcomeMessage[]*> |
<* (* *) *> <* (* Category:Splice Template *) *>