T(9,5)
|
|
Visit T(9,5)'s page at Knotilus!
Visit T(9,5)'s page at the original Knot Atlas! |
T(9,5) Further Notes and Views
Knot presentations
Planar diagram presentation | X51,37,52,36 X66,38,67,37 X9,39,10,38 X24,40,25,39 X67,53,68,52 X10,54,11,53 X25,55,26,54 X40,56,41,55 X11,69,12,68 X26,70,27,69 X41,71,42,70 X56,72,57,71 X27,13,28,12 X42,14,43,13 X57,15,58,14 X72,16,1,15 X43,29,44,28 X58,30,59,29 X1,31,2,30 X16,32,17,31 X59,45,60,44 X2,46,3,45 X17,47,18,46 X32,48,33,47 X3,61,4,60 X18,62,19,61 X33,63,34,62 X48,64,49,63 X19,5,20,4 X34,6,35,5 X49,7,50,6 X64,8,65,7 X35,21,36,20 X50,22,51,21 X65,23,66,22 X8,24,9,23 |
Gauss code | -19, -22, -25, 29, 30, 31, 32, -36, -3, -6, -9, 13, 14, 15, 16, -20, -23, -26, -29, 33, 34, 35, 36, -4, -7, -10, -13, 17, 18, 19, 20, -24, -27, -30, -33, 1, 2, 3, 4, -8, -11, -14, -17, 21, 22, 23, 24, -28, -31, -34, -1, 5, 6, 7, 8, -12, -15, -18, -21, 25, 26, 27, 28, -32, -35, -2, -5, 9, 10, 11, 12, -16 |
Dowker-Thistlethwaite code | 30 60 -34 -64 38 68 -42 -72 46 4 -50 -8 54 12 -58 -16 62 20 -66 -24 70 28 -2 -32 6 36 -10 -40 14 44 -18 -48 22 52 -26 -56 |
Conway Notation | Data:T(9,5)/Conway Notation |
Knot presentations
Planar diagram presentation | X51,37,52,36 X66,38,67,37 X9,39,10,38 X24,40,25,39 X67,53,68,52 X10,54,11,53 X25,55,26,54 X40,56,41,55 X11,69,12,68 X26,70,27,69 X41,71,42,70 X56,72,57,71 X27,13,28,12 X42,14,43,13 X57,15,58,14 X72,16,1,15 X43,29,44,28 X58,30,59,29 X1,31,2,30 X16,32,17,31 X59,45,60,44 X2,46,3,45 X17,47,18,46 X32,48,33,47 X3,61,4,60 X18,62,19,61 X33,63,34,62 X48,64,49,63 X19,5,20,4 X34,6,35,5 X49,7,50,6 X64,8,65,7 X35,21,36,20 X50,22,51,21 X65,23,66,22 X8,24,9,23 |
Gauss code | |
Dowker-Thistlethwaite code | 30 60 -34 -64 38 68 -42 -72 46 4 -50 -8 54 12 -58 -16 62 20 -66 -24 70 28 -2 -32 6 36 -10 -40 14 44 -18 -48 22 52 -26 -56 |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(9,5)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 1, 24 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Data:T(9,5)/HOMFLYPT Polynomial |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:T(9,5)/Kauffman Polynomial |
Vassiliev invariants
V2 and V3: | (80, 600) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 24 is the signature of T(9,5). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | χ | |||||||||
63 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
61 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
59 | 1 | 2 | 1 | 0 | ||||||||||||||||||||||||||||
57 | 1 | 3 | 1 | -1 | ||||||||||||||||||||||||||||
55 | 1 | 3 | 1 | -1 | ||||||||||||||||||||||||||||
53 | 1 | 2 | 2 | 2 | -1 | |||||||||||||||||||||||||||
51 | 3 | 2 | -1 | |||||||||||||||||||||||||||||
49 | 3 | 2 | 1 | 0 | ||||||||||||||||||||||||||||
47 | 2 | 2 | 0 | |||||||||||||||||||||||||||||
45 | 1 | 1 | 2 | 0 | ||||||||||||||||||||||||||||
43 | 1 | 1 | 2 | 0 | ||||||||||||||||||||||||||||
41 | 1 | 1 | 1 | 1 | ||||||||||||||||||||||||||||
39 | 1 | 1 | 1 | 1 | ||||||||||||||||||||||||||||
37 | 1 | 1 | ||||||||||||||||||||||||||||||
35 | 1 | 1 | ||||||||||||||||||||||||||||||
33 | 1 | 1 | ||||||||||||||||||||||||||||||
31 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[9, 5]] |
Out[2]= | 36 |
In[3]:= | PD[TorusKnot[9, 5]] |
Out[3]= | PD[X[51, 37, 52, 36], X[66, 38, 67, 37], X[9, 39, 10, 38],X[24, 40, 25, 39], X[67, 53, 68, 52], X[10, 54, 11, 53], X[25, 55, 26, 54], X[40, 56, 41, 55], X[11, 69, 12, 68], X[26, 70, 27, 69], X[41, 71, 42, 70], X[56, 72, 57, 71], X[27, 13, 28, 12], X[42, 14, 43, 13], X[57, 15, 58, 14], X[72, 16, 1, 15], X[43, 29, 44, 28], X[58, 30, 59, 29], X[1, 31, 2, 30], X[16, 32, 17, 31], X[59, 45, 60, 44], X[2, 46, 3, 45], X[17, 47, 18, 46], X[32, 48, 33, 47], X[3, 61, 4, 60], X[18, 62, 19, 61], X[33, 63, 34, 62], X[48, 64, 49, 63], X[19, 5, 20, 4], X[34, 6, 35, 5], X[49, 7, 50, 6], X[64, 8, 65, 7], X[35, 21, 36, 20], X[50, 22, 51, 21],X[65, 23, 66, 22], X[8, 24, 9, 23]] |
In[4]:= | GaussCode[TorusKnot[9, 5]] |
Out[4]= | GaussCode[-19, -22, -25, 29, 30, 31, 32, -36, -3, -6, -9, 13, 14, 15,16, -20, -23, -26, -29, 33, 34, 35, 36, -4, -7, -10, -13, 17, 18, 19, 20, -24, -27, -30, -33, 1, 2, 3, 4, -8, -11, -14, -17, 21, 22, 23, 24, -28, -31, -34, -1, 5, 6, 7, 8, -12, -15, -18, -21, 25, 26, 27,28, -32, -35, -2, -5, 9, 10, 11, 12, -16] |
In[5]:= | BR[TorusKnot[9, 5]] |
Out[5]= | BR[5, {1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4}] |
In[6]:= | alex = Alexander[TorusKnot[9, 5]][t] |
Out[6]= | -16 -15 -11 -10 -7 -5 -2 2 5 7 10 |
In[7]:= | Conway[TorusKnot[9, 5]][z] |
Out[7]= | 2 4 6 8 10 12 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[9, 5]], KnotSignature[TorusKnot[9, 5]]} |
Out[9]= | {1, 24} |
In[10]:= | J=Jones[TorusKnot[9, 5]][q] |
Out[10]= | 16 18 20 26 28 q + q + q - q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[9, 5]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[9, 5]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[9, 5]], Vassiliev[3][TorusKnot[9, 5]]} |
Out[14]= | {0, 600} |
In[15]:= | Kh[TorusKnot[9, 5]][q, t] |
Out[15]= | 31 33 35 2 39 3 37 4 39 4 41 5 43 5 |