T(31,2)
|
|
Visit T(31,2)'s page at Knotilus!
Visit T(31,2)'s page at the original Knot Atlas! |
T(31,2) Further Notes and Views
Knot presentations
Planar diagram presentation | X17,49,18,48 X49,19,50,18 X19,51,20,50 X51,21,52,20 X21,53,22,52 X53,23,54,22 X23,55,24,54 X55,25,56,24 X25,57,26,56 X57,27,58,26 X27,59,28,58 X59,29,60,28 X29,61,30,60 X61,31,62,30 X31,1,32,62 X1,33,2,32 X33,3,34,2 X3,35,4,34 X35,5,36,4 X5,37,6,36 X37,7,38,6 X7,39,8,38 X39,9,40,8 X9,41,10,40 X41,11,42,10 X11,43,12,42 X43,13,44,12 X13,45,14,44 X45,15,46,14 X15,47,16,46 X47,17,48,16 |
Gauss code | -16, 17, -18, 19, -20, 21, -22, 23, -24, 25, -26, 27, -28, 29, -30, 31, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 26, -27, 28, -29, 30, -31, 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15 |
Dowker-Thistlethwaite code | 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 |
Conway Notation | Data:T(31,2)/Conway Notation |
Knot presentations
Planar diagram presentation | X17,49,18,48 X49,19,50,18 X19,51,20,50 X51,21,52,20 X21,53,22,52 X53,23,54,22 X23,55,24,54 X55,25,56,24 X25,57,26,56 X57,27,58,26 X27,59,28,58 X59,29,60,28 X29,61,30,60 X61,31,62,30 X31,1,32,62 X1,33,2,32 X33,3,34,2 X3,35,4,34 X35,5,36,4 X5,37,6,36 X37,7,38,6 X7,39,8,38 X39,9,40,8 X9,41,10,40 X41,11,42,10 X11,43,12,42 X43,13,44,12 X13,45,14,44 X45,15,46,14 X15,47,16,46 X47,17,48,16 |
Gauss code | |
Dowker-Thistlethwaite code | 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(31,2)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 31, 30 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (120, 1240) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 30 is the signature of T(31,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | χ | |||||||||
93 | 1 | -1 | ||||||||||||||||||||||||||||||||||||||||
91 | 0 | |||||||||||||||||||||||||||||||||||||||||
89 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||
87 | 0 | |||||||||||||||||||||||||||||||||||||||||
85 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||
83 | 0 | |||||||||||||||||||||||||||||||||||||||||
81 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||
79 | 0 | |||||||||||||||||||||||||||||||||||||||||
77 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||
75 | 0 | |||||||||||||||||||||||||||||||||||||||||
73 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||
71 | 0 | |||||||||||||||||||||||||||||||||||||||||
69 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||
67 | 0 | |||||||||||||||||||||||||||||||||||||||||
65 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||
63 | 0 | |||||||||||||||||||||||||||||||||||||||||
61 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||
59 | 0 | |||||||||||||||||||||||||||||||||||||||||
57 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||
55 | 0 | |||||||||||||||||||||||||||||||||||||||||
53 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||
51 | 0 | |||||||||||||||||||||||||||||||||||||||||
49 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||
47 | 0 | |||||||||||||||||||||||||||||||||||||||||
45 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||
43 | 0 | |||||||||||||||||||||||||||||||||||||||||
41 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||
39 | 0 | |||||||||||||||||||||||||||||||||||||||||
37 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||
35 | 0 | |||||||||||||||||||||||||||||||||||||||||
33 | 1 | 1 | ||||||||||||||||||||||||||||||||||||||||
31 | 1 | 1 | ||||||||||||||||||||||||||||||||||||||||
29 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[31, 2]] |
Out[2]= | 31 |
In[3]:= | PD[TorusKnot[31, 2]] |
Out[3]= | PD[X[17, 49, 18, 48], X[49, 19, 50, 18], X[19, 51, 20, 50],X[51, 21, 52, 20], X[21, 53, 22, 52], X[53, 23, 54, 22], X[23, 55, 24, 54], X[55, 25, 56, 24], X[25, 57, 26, 56], X[57, 27, 58, 26], X[27, 59, 28, 58], X[59, 29, 60, 28], X[29, 61, 30, 60], X[61, 31, 62, 30], X[31, 1, 32, 62], X[1, 33, 2, 32], X[33, 3, 34, 2], X[3, 35, 4, 34], X[35, 5, 36, 4], X[5, 37, 6, 36], X[37, 7, 38, 6], X[7, 39, 8, 38], X[39, 9, 40, 8], X[9, 41, 10, 40], X[41, 11, 42, 10], X[11, 43, 12, 42], X[43, 13, 44, 12], X[13, 45, 14, 44], X[45, 15, 46, 14],X[15, 47, 16, 46], X[47, 17, 48, 16]] |
In[4]:= | GaussCode[TorusKnot[31, 2]] |
Out[4]= | GaussCode[-16, 17, -18, 19, -20, 21, -22, 23, -24, 25, -26, 27, -28,29, -30, 31, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 26, -27, 28, -29,30, -31, 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15] |
In[5]:= | BR[TorusKnot[31, 2]] |
Out[5]= | BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}] |
In[6]:= | alex = Alexander[TorusKnot[31, 2]][t] |
Out[6]= | -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 |
In[7]:= | Conway[TorusKnot[31, 2]][z] |
Out[7]= | 2 4 6 8 10 12 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[31, 2]], KnotSignature[TorusKnot[31, 2]]} |
Out[9]= | {31, 30} |
In[10]:= | J=Jones[TorusKnot[31, 2]][q] |
Out[10]= | 15 17 18 19 20 21 22 23 24 25 26 27 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[31, 2]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[31, 2]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[31, 2]], Vassiliev[3][TorusKnot[31, 2]]} |
Out[14]= | {0, 1240} |
In[15]:= | Kh[TorusKnot[31, 2]][q, t] |
Out[15]= | 29 31 33 2 37 3 37 4 41 5 41 6 45 7 |