T(7,2)
|
|
Visit T(7,2)'s page at Knotilus!
Visit T(7,2)'s page at the original Knot Atlas! See also 7_1. |
T(7,2) Further Notes and Views
Knot presentations
Planar diagram presentation | X5,13,6,12 X13,7,14,6 X7,1,8,14 X1928 X9,3,10,2 X3,11,4,10 X11,5,12,4 |
Gauss code | -4, 5, -6, 7, -1, 2, -3, 4, -5, 6, -7, 1, -2, 3 |
Dowker-Thistlethwaite code | 8 10 12 14 2 4 6 |
Conway Notation | Data:T(7,2)/Conway Notation |
Knot presentations
Planar diagram presentation | X5,13,6,12 X13,7,14,6 X7,1,8,14 X1928 X9,3,10,2 X3,11,4,10 X11,5,12,4 |
Gauss code | |
Dowker-Thistlethwaite code | 8 10 12 14 2 4 6 |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(7,2)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 7, 6 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (6, 14) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 6 is the signature of T(7,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | χ | |||||||||
21 | 1 | -1 | ||||||||||||||||
19 | 0 | |||||||||||||||||
17 | 1 | 1 | 0 | |||||||||||||||
15 | 0 | |||||||||||||||||
13 | 1 | 1 | 0 | |||||||||||||||
11 | 0 | |||||||||||||||||
9 | 1 | 1 | ||||||||||||||||
7 | 1 | 1 | ||||||||||||||||
5 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[7, 2]] |
Out[2]= | 7 |
In[3]:= | PD[TorusKnot[7, 2]] |
Out[3]= | PD[X[5, 13, 6, 12], X[13, 7, 14, 6], X[7, 1, 8, 14], X[1, 9, 2, 8], X[9, 3, 10, 2], X[3, 11, 4, 10], X[11, 5, 12, 4]] |
In[4]:= | GaussCode[TorusKnot[7, 2]] |
Out[4]= | GaussCode[-4, 5, -6, 7, -1, 2, -3, 4, -5, 6, -7, 1, -2, 3] |
In[5]:= | BR[TorusKnot[7, 2]] |
Out[5]= | BR[2, {1, 1, 1, 1, 1, 1, 1}] |
In[6]:= | alex = Alexander[TorusKnot[7, 2]][t] |
Out[6]= | -3 -2 1 2 3 |
In[7]:= | Conway[TorusKnot[7, 2]][z] |
Out[7]= | 2 4 6 1 + 6 z + 5 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[7, 1]} |
In[9]:= | {KnotDet[TorusKnot[7, 2]], KnotSignature[TorusKnot[7, 2]]} |
Out[9]= | {7, 6} |
In[10]:= | J=Jones[TorusKnot[7, 2]][q] |
Out[10]= | 3 5 6 7 8 9 10 q + q - q + q - q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[7, 1]} |
In[12]:= | A2Invariant[TorusKnot[7, 2]][q] |
Out[12]= | 10 12 14 16 18 26 28 30 q + q + 2 q + q + q - q - q - q |
In[13]:= | Kauffman[TorusKnot[7, 2]][a, z] |
Out[13]= | 2 2 2 2 3 |
In[14]:= | {Vassiliev[2][TorusKnot[7, 2]], Vassiliev[3][TorusKnot[7, 2]]} |
Out[14]= | {0, 14} |
In[15]:= | Kh[TorusKnot[7, 2]][q, t] |
Out[15]= | 5 7 9 2 13 3 13 4 17 5 17 6 21 7 q + q + q t + q t + q t + q t + q t + q t |