T(8,3)

From Knot Atlas
Revision as of 20:24, 27 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search


T(15,2).jpg

T(15,2)

T(17,2).jpg

T(17,2)

T(8,3).jpg Visit T(8,3)'s page at Knotilus!

Visit T(8,3)'s page at the original Knot Atlas!

T(8,3) Quick Notes



Banco Internacional do Funchal [1]

Knot presentations

Planar diagram presentation X11,1,12,32 X22,2,23,1 X23,13,24,12 X2,14,3,13 X3,25,4,24 X14,26,15,25 X15,5,16,4 X26,6,27,5 X27,17,28,16 X6,18,7,17 X7,29,8,28 X18,30,19,29 X19,9,20,8 X30,10,31,9 X31,21,32,20 X10,22,11,21
Gauss code 2, -4, -5, 7, 8, -10, -11, 13, 14, -16, -1, 3, 4, -6, -7, 9, 10, -12, -13, 15, 16, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 1
Dowker-Thistlethwaite code 22 -24 26 -28 30 -32 2 -4 6 -8 10 -12 14 -16 18 -20
Conway Notation Data:T(8,3)/Conway Notation

Knot presentations

Planar diagram presentation X11,1,12,32 X22,2,23,1 X23,13,24,12 X2,14,3,13 X3,25,4,24 X14,26,15,25 X15,5,16,4 X26,6,27,5 X27,17,28,16 X6,18,7,17 X7,29,8,28 X18,30,19,29 X19,9,20,8 X30,10,31,9 X31,21,32,20 X10,22,11,21
Gauss code
Dowker-Thistlethwaite code 22 -24 26 -28 30 -32 2 -4 6 -8 10 -12 14 -16 18 -20

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 3, 10 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:T(8,3)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(8,3)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3: (21, 84)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:T(8,3)/V 2,1 Data:T(8,3)/V 3,1 Data:T(8,3)/V 4,1 Data:T(8,3)/V 4,2 Data:T(8,3)/V 4,3 Data:T(8,3)/V 5,1 Data:T(8,3)/V 5,2 Data:T(8,3)/V 5,3 Data:T(8,3)/V 5,4 Data:T(8,3)/V 6,1 Data:T(8,3)/V 6,2 Data:T(8,3)/V 6,3 Data:T(8,3)/V 6,4 Data:T(8,3)/V 6,5 Data:T(8,3)/V 6,6 Data:T(8,3)/V 6,7 Data:T(8,3)/V 6,8 Data:T(8,3)/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 10 is the signature of T(8,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
01234567891011χ
33           1-1
31         1  -1
29         11 0
27       11   0
25     1  1   0
23     11     0
21   11       0
19    1       1
17  1         1
151           1
131           1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[TorusKnot[8, 3]]
Out[2]=  
16
In[3]:=
PD[TorusKnot[8, 3]]
Out[3]=  
PD[X[11, 1, 12, 32], X[22, 2, 23, 1], X[23, 13, 24, 12], 
 X[2, 14, 3, 13], X[3, 25, 4, 24], X[14, 26, 15, 25], X[15, 5, 16, 4], 

 X[26, 6, 27, 5], X[27, 17, 28, 16], X[6, 18, 7, 17], X[7, 29, 8, 28], 

 X[18, 30, 19, 29], X[19, 9, 20, 8], X[30, 10, 31, 9], 

X[31, 21, 32, 20], X[10, 22, 11, 21]]
In[4]:=
GaussCode[TorusKnot[8, 3]]
Out[4]=  
GaussCode[2, -4, -5, 7, 8, -10, -11, 13, 14, -16, -1, 3, 4, -6, -7, 9, 
  10, -12, -13, 15, 16, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 1]
In[5]:=
BR[TorusKnot[8, 3]]
Out[5]=  
BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2}]
In[6]:=
alex = Alexander[TorusKnot[8, 3]][t]
Out[6]=  
      -7    -6    -4    -3   1        3    4    6    7

-1 + t - t + t - t + - + t - t + t - t + t

t
In[7]:=
Conway[TorusKnot[8, 3]][z]
Out[7]=  
        2        4        6        8       10       12    14
1 + 21 z  + 105 z  + 189 z  + 157 z  + 65 z   + 13 z   + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{}
In[9]:=
{KnotDet[TorusKnot[8, 3]], KnotSignature[TorusKnot[8, 3]]}
Out[9]=  
{3, 10}
In[10]:=
J=Jones[TorusKnot[8, 3]][q]
Out[10]=  
 7    9    16
q  + q  - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{}
In[12]:=
A2Invariant[TorusKnot[8, 3]][q]
Out[12]=  
NotAvailable
In[13]:=
Kauffman[TorusKnot[8, 3]][a, z]
Out[13]=  
                                    2        2        2        3

-7 21 15 21 z 21 z 21 z 126 z 105 z 105 z --- - --- - --- + ---- + ---- + ----- + ------ + ------ - ------ -

18    16    14    17     15      18      16       14       17

a a a a a a a a a

      3       4        4        4        5        5      6        6
 105 z    21 z    294 z    273 z    189 z    189 z    8 z    346 z
 ------ - ----- - ------ - ------ + ------ + ------ + ---- + ------ + 
   15       18      16       14       17       15      18      16
  a        a       a        a        a        a       a       a

      6        7        7    8         8        8       9       9
 338 z    157 z    157 z    z     222 z    221 z    65 z    65 z
 ------ - ------ - ------ - --- - ------ - ------ + ----- + ----- + 
   14       17       15      18     16       14       17      15
  a        a        a       a      a        a        a       a

     10       10       11       11       12       12    13    13
 78 z     78 z     13 z     13 z     14 z     14 z     z     z
 ------ + ------ - ------ - ------ - ------ - ------ + --- + --- + 
   16       14       17       15       16       14      17    15
  a        a        a        a        a        a       a     a

  14    14
 z     z
 --- + ---
  16    14
a a
In[14]:=
{Vassiliev[2][TorusKnot[8, 3]], Vassiliev[3][TorusKnot[8, 3]]}
Out[14]=  
{0, 84}
In[15]:=
Kh[TorusKnot[8, 3]][q, t]
Out[15]=  
 13    15    17  2    21  3    19  4    21  4    23  5    25  5

q + q + q t + q t + q t + q t + q t + q t +

  23  6    27  7    25  8    27  8    29  9    31  9    29  10
 q   t  + q   t  + q   t  + q   t  + q   t  + q   t  + q   t   + 

  33  11
q t