10 154
|
|
|
|
Visit 10 154's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 154's page at Knotilus! Visit 10 154's page at the original Knot Atlas! |
10 154 Quick Notes |
10 154 Further Notes and Views
Knot presentations
| Planar diagram presentation | X4251 X8493 X12,6,13,5 X9,17,10,16 X17,1,18,20 X13,19,14,18 X19,15,20,14 X15,11,16,10 X6,12,7,11 X2837 |
| Gauss code | 1, -10, 2, -1, 3, -9, 10, -2, -4, 8, 9, -3, -6, 7, -8, 4, -5, 6, -7, 5 |
| Dowker-Thistlethwaite code | 4 8 12 2 -16 6 -18 -10 -20 -14 |
| Conway Notation | [(21,2)-(21,2)] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-4 t+7-4 t^{-1} + t^{-3} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6+6 z^4+5 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 13, 4 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{12}-2 q^{11}+2 q^{10}-3 q^9+2 q^8-2 q^7+2 q^6+q^3} |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{-6} +6 z^4 a^{-6} +9 z^2 a^{-6} -2 z^2 a^{-8} -2 z^2 a^{-10} +4 a^{-6} -2 a^{-8} -2 a^{-10} + a^{-12} } |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-10} +z^8 a^{-12} +z^7 a^{-9} +3 z^7 a^{-11} +2 z^7 a^{-13} +z^6 a^{-6} -5 z^6 a^{-10} -3 z^6 a^{-12} +z^6 a^{-14} -6 z^5 a^{-9} -15 z^5 a^{-11} -9 z^5 a^{-13} -6 z^4 a^{-6} -2 z^4 a^{-8} +7 z^4 a^{-10} -z^4 a^{-12} -4 z^4 a^{-14} -2 z^3 a^{-7} +9 z^3 a^{-9} +21 z^3 a^{-11} +10 z^3 a^{-13} +9 z^2 a^{-6} +5 z^2 a^{-8} -5 z^2 a^{-10} +2 z^2 a^{-12} +3 z^2 a^{-14} +3 z a^{-7} -3 z a^{-9} -10 z a^{-11} -4 z a^{-13} -4 a^{-6} -2 a^{-8} +2 a^{-10} + a^{-12} } |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-10} + q^{-12} + q^{-14} +2 q^{-16} +2 q^{-18} + q^{-22} - q^{-24} - q^{-26} -2 q^{-28} -2 q^{-30} - q^{-34} + q^{-36} + q^{-38} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-50} + q^{-52} +2 q^{-56} + q^{-58} +3 q^{-62} + q^{-66} +3 q^{-68} -2 q^{-70} +3 q^{-72} +3 q^{-74} -4 q^{-76} +7 q^{-78} -5 q^{-80} +2 q^{-82} +5 q^{-84} -7 q^{-86} +9 q^{-88} -4 q^{-90} -4 q^{-92} +8 q^{-94} -5 q^{-96} +7 q^{-100} -10 q^{-102} +8 q^{-104} -2 q^{-106} -6 q^{-108} +8 q^{-110} -9 q^{-112} +6 q^{-114} -5 q^{-116} -2 q^{-118} + q^{-120} -3 q^{-122} -6 q^{-126} -2 q^{-130} -2 q^{-132} + q^{-134} -4 q^{-136} -2 q^{-138} +8 q^{-140} -10 q^{-142} +6 q^{-144} -7 q^{-148} +14 q^{-150} -10 q^{-152} +6 q^{-154} +4 q^{-156} -5 q^{-158} +8 q^{-160} -3 q^{-162} - q^{-164} +6 q^{-166} -4 q^{-168} +3 q^{-172} -5 q^{-174} +6 q^{-176} -4 q^{-178} - q^{-180} + q^{-182} -3 q^{-184} +2 q^{-186} - q^{-188} + q^{-190} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-5} + q^{-7} +2 q^{-11} - q^{-17} - q^{-19} - q^{-23} + q^{-25} } |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-10} + q^{-12} + q^{-14} +3 q^{-20} +2 q^{-22} -2 q^{-24} + q^{-26} +2 q^{-28} -2 q^{-30} -3 q^{-32} -2 q^{-38} -2 q^{-40} +2 q^{-42} - q^{-44} -2 q^{-46} +4 q^{-48} -2 q^{-52} +2 q^{-54} +2 q^{-56} - q^{-58} -2 q^{-60} + q^{-62} +2 q^{-64} -2 q^{-66} - q^{-68} + q^{-70} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-15} + q^{-17} + q^{-19} + q^{-21} +3 q^{-29} +3 q^{-31} +3 q^{-33} -2 q^{-35} -4 q^{-37} - q^{-39} +6 q^{-41} +8 q^{-43} -6 q^{-45} -15 q^{-47} -2 q^{-49} +14 q^{-51} +6 q^{-53} -16 q^{-55} -12 q^{-57} +8 q^{-59} +10 q^{-61} -2 q^{-63} -8 q^{-65} +4 q^{-69} +3 q^{-71} -2 q^{-73} -3 q^{-75} + q^{-77} +6 q^{-79} -6 q^{-83} +2 q^{-85} +11 q^{-87} -12 q^{-91} -4 q^{-93} +12 q^{-95} +8 q^{-97} -11 q^{-99} -12 q^{-101} +2 q^{-103} +11 q^{-105} +4 q^{-107} -6 q^{-109} -6 q^{-111} +5 q^{-115} +4 q^{-117} - q^{-119} -4 q^{-121} -3 q^{-123} +3 q^{-125} +3 q^{-127} -2 q^{-131} - q^{-133} + q^{-135} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-10} + q^{-12} + q^{-14} +2 q^{-16} +2 q^{-18} + q^{-22} - q^{-24} - q^{-26} -2 q^{-28} -2 q^{-30} - q^{-34} + q^{-36} + q^{-38} } |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-20} +2 q^{-22} +2 q^{-24} +6 q^{-26} +5 q^{-28} +4 q^{-30} +8 q^{-32} -4 q^{-34} +12 q^{-36} -8 q^{-38} +2 q^{-40} -6 q^{-42} -14 q^{-44} +8 q^{-46} -20 q^{-48} +6 q^{-50} -8 q^{-52} -2 q^{-54} +8 q^{-56} -8 q^{-58} +14 q^{-60} -8 q^{-62} +12 q^{-64} -6 q^{-66} +3 q^{-68} -8 q^{-72} +16 q^{-74} -21 q^{-76} +22 q^{-78} -16 q^{-80} +12 q^{-82} -2 q^{-84} -8 q^{-86} +10 q^{-88} -12 q^{-90} +11 q^{-92} -8 q^{-94} +4 q^{-96} -2 q^{-98} + q^{-100} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-20} + q^{-22} +2 q^{-24} + q^{-26} + q^{-28} +3 q^{-30} +5 q^{-32} +2 q^{-34} +2 q^{-36} +3 q^{-38} +3 q^{-40} + q^{-42} -2 q^{-44} -3 q^{-46} -3 q^{-48} -4 q^{-50} -4 q^{-52} -8 q^{-54} -6 q^{-56} -3 q^{-58} - q^{-60} - q^{-62} +3 q^{-64} +6 q^{-66} +4 q^{-68} +4 q^{-70} +2 q^{-74} + q^{-78} - q^{-80} - q^{-82} + q^{-84} -2 q^{-88} -3 q^{-90} + q^{-94} + q^{-96} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-20} + q^{-22} +2 q^{-24} +3 q^{-26} +5 q^{-28} +3 q^{-30} +5 q^{-32} +2 q^{-34} -2 q^{-40} -3 q^{-42} -4 q^{-44} -4 q^{-46} -4 q^{-48} -6 q^{-50} -4 q^{-52} - q^{-54} +3 q^{-58} +6 q^{-60} +4 q^{-62} +2 q^{-64} +2 q^{-66} -2 q^{-68} - q^{-70} -2 q^{-72} - q^{-78} + q^{-80} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-15} + q^{-17} + q^{-19} +3 q^{-21} +2 q^{-23} +2 q^{-25} + q^{-27} + q^{-29} - q^{-31} - q^{-33} -2 q^{-35} -2 q^{-37} -2 q^{-39} -2 q^{-41} - q^{-45} + q^{-47} + q^{-49} + q^{-51} } |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-30} + q^{-32} +2 q^{-34} +4 q^{-36} +6 q^{-38} +6 q^{-40} +9 q^{-42} +7 q^{-44} +6 q^{-46} +5 q^{-48} +3 q^{-50} -3 q^{-52} -3 q^{-54} -3 q^{-56} -5 q^{-58} -9 q^{-60} -9 q^{-62} -8 q^{-64} -14 q^{-66} -13 q^{-68} -7 q^{-70} -4 q^{-72} - q^{-74} +9 q^{-76} +12 q^{-78} +11 q^{-80} +11 q^{-82} +10 q^{-84} +3 q^{-86} -3 q^{-88} -3 q^{-90} -3 q^{-92} -6 q^{-94} -4 q^{-96} + q^{-104} + q^{-106} } |
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-20} + q^{-22} + q^{-24} +3 q^{-26} +3 q^{-28} +2 q^{-30} +3 q^{-32} + q^{-34} + q^{-36} - q^{-38} - q^{-40} -2 q^{-42} -2 q^{-44} -2 q^{-46} -2 q^{-48} -2 q^{-50} -2 q^{-52} - q^{-56} + q^{-58} + q^{-60} + q^{-62} + q^{-64} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-20} + q^{-22} +3 q^{-26} + q^{-28} + q^{-30} + q^{-32} +2 q^{-36} -2 q^{-38} +2 q^{-40} -3 q^{-42} +2 q^{-44} -2 q^{-46} -2 q^{-52} +3 q^{-54} -4 q^{-56} +3 q^{-58} -4 q^{-60} +2 q^{-62} -2 q^{-64} - q^{-70} +2 q^{-72} -2 q^{-74} +2 q^{-76} - q^{-78} + q^{-80} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-30} + q^{-34} + q^{-36} + q^{-38} +3 q^{-42} +2 q^{-44} +2 q^{-46} + q^{-48} +2 q^{-50} +3 q^{-52} + q^{-54} -2 q^{-56} + q^{-58} +2 q^{-60} -3 q^{-64} -2 q^{-66} - q^{-70} -4 q^{-72} -4 q^{-74} - q^{-76} - q^{-78} -2 q^{-80} -4 q^{-82} -2 q^{-84} + q^{-86} + q^{-88} - q^{-90} +2 q^{-94} +4 q^{-96} +2 q^{-98} + q^{-102} +4 q^{-104} + q^{-106} -2 q^{-108} -2 q^{-110} + q^{-112} + q^{-114} -2 q^{-116} -2 q^{-118} + q^{-120} + q^{-122} - q^{-124} - q^{-126} + q^{-130} } |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-30} + q^{-32} + q^{-34} +4 q^{-36} +3 q^{-38} +5 q^{-40} +5 q^{-42} +5 q^{-44} +3 q^{-46} +2 q^{-48} +2 q^{-50} -3 q^{-52} -4 q^{-56} -5 q^{-60} - q^{-62} -4 q^{-64} -3 q^{-66} -5 q^{-68} -6 q^{-70} -4 q^{-72} -5 q^{-74} + q^{-76} -3 q^{-78} +5 q^{-80} +2 q^{-82} +8 q^{-84} +2 q^{-86} +5 q^{-88} + q^{-92} -2 q^{-96} - q^{-98} -3 q^{-100} +2 q^{-102} -2 q^{-104} + q^{-106} - q^{-108} + q^{-110} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-50} + q^{-52} +2 q^{-56} + q^{-58} +3 q^{-62} + q^{-66} +3 q^{-68} -2 q^{-70} +3 q^{-72} +3 q^{-74} -4 q^{-76} +7 q^{-78} -5 q^{-80} +2 q^{-82} +5 q^{-84} -7 q^{-86} +9 q^{-88} -4 q^{-90} -4 q^{-92} +8 q^{-94} -5 q^{-96} +7 q^{-100} -10 q^{-102} +8 q^{-104} -2 q^{-106} -6 q^{-108} +8 q^{-110} -9 q^{-112} +6 q^{-114} -5 q^{-116} -2 q^{-118} + q^{-120} -3 q^{-122} -6 q^{-126} -2 q^{-130} -2 q^{-132} + q^{-134} -4 q^{-136} -2 q^{-138} +8 q^{-140} -10 q^{-142} +6 q^{-144} -7 q^{-148} +14 q^{-150} -10 q^{-152} +6 q^{-154} +4 q^{-156} -5 q^{-158} +8 q^{-160} -3 q^{-162} - q^{-164} +6 q^{-166} -4 q^{-168} +3 q^{-172} -5 q^{-174} +6 q^{-176} -4 q^{-178} - q^{-180} + q^{-182} -3 q^{-184} +2 q^{-186} - q^{-188} + q^{-190} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 154"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-4 t+7-4 t^{-1} + t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6+6 z^4+5 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 13, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{12}-2 q^{11}+2 q^{10}-3 q^9+2 q^8-2 q^7+2 q^6+q^3} |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{-6} +6 z^4 a^{-6} +9 z^2 a^{-6} -2 z^2 a^{-8} -2 z^2 a^{-10} +4 a^{-6} -2 a^{-8} -2 a^{-10} + a^{-12} } |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-10} +z^8 a^{-12} +z^7 a^{-9} +3 z^7 a^{-11} +2 z^7 a^{-13} +z^6 a^{-6} -5 z^6 a^{-10} -3 z^6 a^{-12} +z^6 a^{-14} -6 z^5 a^{-9} -15 z^5 a^{-11} -9 z^5 a^{-13} -6 z^4 a^{-6} -2 z^4 a^{-8} +7 z^4 a^{-10} -z^4 a^{-12} -4 z^4 a^{-14} -2 z^3 a^{-7} +9 z^3 a^{-9} +21 z^3 a^{-11} +10 z^3 a^{-13} +9 z^2 a^{-6} +5 z^2 a^{-8} -5 z^2 a^{-10} +2 z^2 a^{-12} +3 z^2 a^{-14} +3 z a^{-7} -3 z a^{-9} -10 z a^{-11} -4 z a^{-13} -4 a^{-6} -2 a^{-8} +2 a^{-10} + a^{-12} } |
Vassiliev invariants
| V2 and V3: | (5, 9) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 4 is the signature of 10 154. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | χ | |||||||||
| 25 | 1 | 1 | |||||||||||||||||||
| 23 | 1 | -1 | |||||||||||||||||||
| 21 | 1 | 1 | 0 | ||||||||||||||||||
| 19 | 2 | 1 | -1 | ||||||||||||||||||
| 17 | 1 | 1 | 1 | -1 | |||||||||||||||||
| 15 | 2 | 2 | 0 | ||||||||||||||||||
| 13 | 1 | 2 | 1 | 0 | |||||||||||||||||
| 11 | 2 | 2 | |||||||||||||||||||
| 9 | 1 | 1 | 0 | ||||||||||||||||||
| 7 | 1 | 1 | |||||||||||||||||||
| 5 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 154]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 154]] |
Out[3]= | PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 6, 13, 5], X[9, 17, 10, 16],X[17, 1, 18, 20], X[13, 19, 14, 18], X[19, 15, 20, 14],X[15, 11, 16, 10], X[6, 12, 7, 11], X[2, 8, 3, 7]] |
In[4]:= | GaussCode[Knot[10, 154]] |
Out[4]= | GaussCode[1, -10, 2, -1, 3, -9, 10, -2, -4, 8, 9, -3, -6, 7, -8, 4, -5, 6, -7, 5] |
In[5]:= | BR[Knot[10, 154]] |
Out[5]= | BR[4, {1, 1, 2, -1, 2, 1, 3, 2, 2, 2, 3}] |
In[6]:= | alex = Alexander[Knot[10, 154]][t] |
Out[6]= | -3 4 3 |
In[7]:= | Conway[Knot[10, 154]][z] |
Out[7]= | 2 4 6 1 + 5 z + 6 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 154]} |
In[9]:= | {KnotDet[Knot[10, 154]], KnotSignature[Knot[10, 154]]} |
Out[9]= | {13, 4} |
In[10]:= | J=Jones[Knot[10, 154]][q] |
Out[10]= | 3 6 7 8 9 10 11 12 q + 2 q - 2 q + 2 q - 3 q + 2 q - 2 q + q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 154]} |
In[12]:= | A2Invariant[Knot[10, 154]][q] |
Out[12]= | 10 12 14 16 18 22 24 26 28 30 |
In[13]:= | Kauffman[Knot[10, 154]][a, z] |
Out[13]= | 2 2 2-12 2 2 4 4 z 10 z 3 z 3 z 3 z 2 z 5 z |
In[14]:= | {Vassiliev[2][Knot[10, 154]], Vassiliev[3][Knot[10, 154]]} |
Out[14]= | {0, 9} |
In[15]:= | Kh[Knot[10, 154]][q, t] |
Out[15]= | 5 7 9 2 9 3 13 3 11 4 13 4 13 5 |


