In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Knot[10, 69]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 69]] |
Out[3]= | PD[X[1, 4, 2, 5], X[7, 12, 8, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],
X[13, 17, 14, 16], X[5, 15, 6, 14], X[15, 7, 16, 6],
X[17, 20, 18, 1], X[9, 19, 10, 18], X[19, 9, 20, 8]] |
In[4]:= | GaussCode[Knot[10, 69]] |
Out[4]= | GaussCode[-1, 4, -3, 1, -6, 7, -2, 10, -9, 3, -4, 2, -5, 6, -7, 5, -8,
9, -10, 8] |
In[5]:= | BR[Knot[10, 69]] |
Out[5]= | BR[5, {1, 1, 2, -1, -3, 2, 1, 4, -3, 2, -3, 4}] |
In[6]:= | alex = Alexander[Knot[10, 69]][t] |
Out[6]= | -3 7 21 2 3
-29 + t - -- + -- + 21 t - 7 t + t
2 t
t |
In[7]:= | Conway[Knot[10, 69]][z] |
Out[7]= | 2 4 6
1 + 2 z - z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 69]} |
In[9]:= | {KnotDet[Knot[10, 69]], KnotSignature[Knot[10, 69]]} |
Out[9]= | {87, 2} |
In[10]:= | J=Jones[Knot[10, 69]][q] |
Out[10]= | -2 4 2 3 4 5 6 7 8
-7 - q + - + 11 q - 14 q + 15 q - 13 q + 11 q - 7 q + 3 q - q
q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 69]} |
In[12]:= | A2Invariant[Knot[10, 69]][q] |
Out[12]= | -6 2 -2 2 4 6 8 12 14 16
-q + -- - q + 4 q - 3 q + 2 q - q + 2 q - 2 q + 3 q -
4
q
18 20 22 24 26
q - q + 2 q - q - q |
In[13]:= | Kauffman[Knot[10, 69]][a, z] |
Out[13]= | 2 2
-8 2 2 2 z 2 z 6 z 4 z z 2 3 z 7 z
-a - -- - -- - -- + -- - --- - --- - --- - - + 3 z + ---- + ---- +
6 4 2 9 7 5 3 a 8 6
a a a a a a a a a
2 2 3 3 3 3 3
12 z 11 z 2 z 5 z 23 z 22 z 5 z 3 4
----- + ----- - ---- + ---- + ----- + ----- + ---- - a z - 7 z -
4 2 9 7 5 3 a
a a a a a a
4 4 4 4 5 5 5 5 5
5 z 9 z 14 z 17 z z 8 z 30 z 32 z 10 z
---- - ---- - ----- - ----- + -- - ---- - ----- - ----- - ----- +
8 6 4 2 9 7 5 3 a
a a a a a a a a
6 6 6 7 7 7 7
5 6 3 z 4 z 3 z 5 z 13 z 14 z 6 z
a z + 4 z + ---- - ---- + ---- + ---- + ----- + ----- + ---- +
8 4 2 7 5 3 a
a a a a a a
8 8 8 9 9
4 z 8 z 4 z z z
---- + ---- + ---- + -- + --
6 4 2 5 3
a a a a a |
In[14]:= | {Vassiliev[2][Knot[10, 69]], Vassiliev[3][Knot[10, 69]]} |
Out[14]= | {0, 4} |
In[15]:= | Kh[Knot[10, 69]][q, t] |
Out[15]= | 3 1 3 1 4 3 q 3 5
7 q + 5 q + ----- + ----- + ---- + --- + --- + 8 q t + 6 q t +
5 3 3 2 2 q t t
q t q t q t
5 2 7 2 7 3 9 3 9 4 11 4
7 q t + 8 q t + 6 q t + 7 q t + 5 q t + 6 q t +
11 5 13 5 13 6 15 6 17 7
2 q t + 5 q t + q t + 2 q t + q t |