9 37

From Knot Atlas
Revision as of 20:49, 27 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search


9 36.gif

9_36

9 38.gif

9_38

9 37.gif Visit 9 37's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 37's page at Knotilus!

Visit 9 37's page at the original Knot Atlas!

9 37 Quick Notes


9 37 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X7,12,8,13 X3,11,4,10 X11,3,12,2 X5,14,6,15 X13,6,14,7 X15,18,16,1 X9,17,10,16 X17,9,18,8
Gauss code -1, 4, -3, 1, -5, 6, -2, 9, -8, 3, -4, 2, -6, 5, -7, 8, -9, 7
Dowker-Thistlethwaite code 4 10 14 12 16 2 6 18 8
Conway Notation [3,21,21]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 3
Super bridge index
Nakanishi index 2
Maximal Thurston-Bennequin number [-6][-5]
Hyperbolic Volume 10.9894
A-Polynomial See Data:9 37/A-polynomial

[edit Notes for 9 37's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 9 37's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 45, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (-3, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 37. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
-5-4-3-2-101234χ
9         11
7        1 -1
5       41 3
3      31  -2
1     44   0
-1    54    -1
-3   23     -1
-5  25      3
-7 12       -1
-9 2        2
-111         -1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 37]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 37]]
Out[3]=  
PD[X[1, 4, 2, 5], X[7, 12, 8, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], 
 X[5, 14, 6, 15], X[13, 6, 14, 7], X[15, 18, 16, 1], X[9, 17, 10, 16], 

X[17, 9, 18, 8]]
In[4]:=
GaussCode[Knot[9, 37]]
Out[4]=  
GaussCode[-1, 4, -3, 1, -5, 6, -2, 9, -8, 3, -4, 2, -6, 5, -7, 8, -9, 7]
In[5]:=
BR[Knot[9, 37]]
Out[5]=  
BR[5, {-1, -1, 2, -1, -3, 2, 1, 4, -3, 2, -3, 4}]
In[6]:=
alex = Alexander[Knot[9, 37]][t]
Out[6]=  
     2    11             2

19 + -- - -- - 11 t + 2 t

     2   t
t
In[7]:=
Conway[Knot[9, 37]][z]
Out[7]=  
       2      4
1 - 3 z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 37], Knot[11, NonAlternating, 100]}
In[9]:=
{KnotDet[Knot[9, 37]], KnotSignature[Knot[9, 37]]}
Out[9]=  
{45, 0}
In[10]:=
J=Jones[Knot[9, 37]][q]
Out[10]=  
     -5   3    4    7    8            2      3    4

7 - q + -- - -- + -- - - - 7 q + 5 q - 2 q + q

          4    3    2   q
q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 37]}
In[12]:=
A2Invariant[Knot[9, 37]][q]
Out[12]=  
      -16    -14    -12    -10   3     -6      4    6      8    10

-3 - q + q + q - q + -- + q - 2 q + q + 2 q - q +

                                 8
                                q

  12    14
q + q
In[13]:=
Kauffman[Knot[9, 37]][a, z]
Out[13]=  
                                                    2    2
     -4      2   5 z              3         2   2 z    z        2  2

-2 + a - 2 a - --- - 7 a z - 2 a z + 12 z - ---- + -- + 14 a z +

                  a                               4     2
                                                 a     a

              3      3                                          4
    4  2   2 z    6 z          3      3  3      5  3       4   z
 5 a  z  - ---- + ---- + 13 a z  + 3 a  z  - 2 a  z  - 13 z  + -- - 
             3     a                                            4
            a                                                  a

    4                           5      5
 3 z        2  4      4  4   2 z    4 z          5      3  5    5  5
 ---- - 17 a  z  - 8 a  z  + ---- - ---- - 13 a z  - 6 a  z  + a  z  + 
   2                           3     a
  a                           a

           6                          7
    6   3 z       2  6      4  6   3 z         7      3  7    8    2  8
 5 z  + ---- + 5 a  z  + 3 a  z  + ---- + 6 a z  + 3 a  z  + z  + a  z
          2                         a
a
In[14]:=
{Vassiliev[2][Knot[9, 37]], Vassiliev[3][Knot[9, 37]]}
Out[14]=  
{0, -1}
In[15]:=
Kh[Knot[9, 37]][q, t]
Out[15]=  
4           1        2       1       2       2       5       2

- + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + q 11 5 9 4 7 4 7 3 5 3 5 2 3 2

         q   t    q  t    q  t    q  t    q  t    q  t    q  t

  3      5               3      3  2      5  2    5  3    7  3    9  4
 ---- + --- + 4 q t + 3 q  t + q  t  + 4 q  t  + q  t  + q  t  + q  t
  3     q t
q t