5 2

From Knot Atlas
Revision as of 20:42, 27 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search


5 1.gif

5_1

6 1.gif

6_1

5 2.gif Visit 5 2's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 5 2's page at Knotilus!

Visit 5 2's page at the original Knot Atlas!

5_2 is also known as the 3-twist knot.




3D depiction
Simple square depiction
Lissajous curve x=cos(2t+0.2), y=cos(3t+0.7), z=cos(7t); 2 crossings can be removed

Knot presentations

Planar diagram presentation X1425 X3849 X5,10,6,1 X9,6,10,7 X7283
Gauss code -1, 5, -2, 1, -3, 4, -5, 2, -4, 3
Dowker-Thistlethwaite code 4 8 10 2 6
Conway Notation [32]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 1
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-8][1]
Hyperbolic Volume 2.82812
A-Polynomial See Data:5 2/A-polynomial

[edit Notes for 5 2's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 5 2's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 7, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (2, -3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 5 2. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
-5-4-3-2-10χ
-1     11
-3    110
-5   1  1
-7   1  1
-9 11   0
-11      0
-131     -1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[5, 2]]
Out[2]=  
5
In[3]:=
PD[Knot[5, 2]]
Out[3]=  
PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 10, 6, 1], X[9, 6, 10, 7], 
  X[7, 2, 8, 3]]
In[4]:=
GaussCode[Knot[5, 2]]
Out[4]=  
GaussCode[-1, 5, -2, 1, -3, 4, -5, 2, -4, 3]
In[5]:=
BR[Knot[5, 2]]
Out[5]=  
BR[3, {-1, -1, -1, -2, 1, -2}]
In[6]:=
alex = Alexander[Knot[5, 2]][t]
Out[6]=  
     2

-3 + - + 2 t

t
In[7]:=
Conway[Knot[5, 2]][z]
Out[7]=  
       2
1 + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[5, 2]}
In[9]:=
{KnotDet[Knot[5, 2]], KnotSignature[Knot[5, 2]]}
Out[9]=  
{7, -2}
In[10]:=
J=Jones[Knot[5, 2]][q]
Out[10]=  
  -6    -5    -4   2     -2   1

-q + q - q + -- - q + -

                   3         q
q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[5, 2], Knot[11, NonAlternating, 57]}
In[12]:=
A2Invariant[Knot[5, 2]][q]
Out[12]=  
  -20    -18    -12    -10    -8    -6    -2
-q    - q    + q    + q    + q   + q   + q
In[13]:=
Kauffman[Knot[5, 2]][a, z]
Out[13]=  
  2    4    6      5        7      2  2    4  2      6  2    3  3

-a + a + a - 2 a z - 2 a z + a z - a z - 2 a z + a z +

    5  3    7  3    4  4    6  4
2 a z + a z + a z + a z
In[14]:=
{Vassiliev[2][Knot[5, 2]], Vassiliev[3][Knot[5, 2]]}
Out[14]=  
{0, -3}
In[15]:=
Kh[Knot[5, 2]][q, t]
Out[15]=  
 -3   1     1        1       1       1       1      1

q + - + ------ + ----- + ----- + ----- + ----- + ----

     q    13  5    9  4    9  3    7  2    5  2    3
q t q t q t q t q t q t