L6a1

From Knot Atlas
Revision as of 19:39, 28 August 2005 by ScottTestRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L5a1.gif

L5a1

L6a2.gif

L6a2

L6a1.gif Visit [ L6a1's page] at Knotilus!

Visit 164.html L6a1's page at the original Knot Atlas!

L6a1 is in the Rolfsen table of links.



A kolam with two cycles/components[1]
Depiction with two eights interlaced
Mongolian ornament ; the two eights are horizontal
Another one, sum of two L6a1
Another depiction

Knot presentations

Planar diagram presentation X6172 X10,3,11,4 X12,8,5,7 X8,12,9,11 X2536 X4,9,1,10
Gauss code {1, -5, 2, -6}, {5, -1, 3, -4, 6, -2, 4, -3}

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Vassiliev invariants

V2 and V3: (0, )
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:L6a1/V 2,1 Data:L6a1/V 3,1 Data:L6a1/V 4,1 Data:L6a1/V 4,2 Data:L6a1/V 4,3 Data:L6a1/V 5,1 Data:L6a1/V 5,2 Data:L6a1/V 5,3 Data:L6a1/V 5,4 Data:L6a1/V 6,1 Data:L6a1/V 6,2 Data:L6a1/V 6,3 Data:L6a1/V 6,4 Data:L6a1/V 6,5 Data:L6a1/V 6,6 Data:L6a1/V 6,7 Data:L6a1/V 6,8 Data:L6a1/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -1 is the signature of L6a1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-1012χ
4      11
2     1 -1
0    11 0
-2   22  0
-4  1    1
-6  2    2
-811     0
-101      1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[L6a1]]
Out[2]=  
0
In[3]:=
PD[Knot[L6a1]]
Out[3]=  
PD[Knot[L6a1]]
In[4]:=
GaussCode[Knot[L6a1]]
Out[4]=  
GaussCode[PD[Knot[L6a1]]]
In[5]:=
BR[Knot[L6a1]]
Out[5]=  
BR[Knot[L6a1]]
In[6]:=
alex = Alexander[Knot[L6a1]][t]
Out[6]=  
1
In[7]:=
Conway[Knot[L6a1]][z]
Out[7]=  
1
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[0, 1], Knot[11, NonAlternating, 34], Knot[11, NonAlternating, 42]}
In[9]:=
{KnotDet[Knot[L6a1]], KnotSignature[Knot[L6a1]]}
Out[9]=  
{1, 0}
In[10]:=
J=Jones[Knot[L6a1]][q]
Out[10]=  
  Sqrt[q] Knot[L6a1]

-(------------------)

1 + q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{}
In[12]:=
A2Invariant[Knot[L6a1]][q]
Out[12]=  
Knot[L6a1]
In[13]:=
Kauffman[Knot[L6a1]][a, z]
Out[13]=  
                                              1

KnotTheory`Kauffman`StateValuation[I a, -I z][-]

                                             4

------------------------------------------------ +

                 PD[Knot[L6a1]]/2
            (I a)

 KnotTheory`Kauffman`StateValuation[I a, -I z][Flatten[KnotTheory`Kauf\

                                       PD[Knot[L6a1]]/2
       fman`Decorate /@ #1] & ] / (I a)                 + 

 KnotTheory`Kauffman`StateValuation[I a, -I z][{KnotTheory`Kauffman`St\

                                   PD[Knot[L6a1]]/2
ate[PD[Knot[L6a1]]]}] / (I a)
In[14]:=
{Vassiliev[2][Knot[L6a1]], Vassiliev[3][Knot[L6a1]]}
Out[14]=  
{0, 0}
In[15]:=
Kh[Knot[L6a1]][q, t]
Out[15]=  
$Failed[q, t]