10 165

From Knot Atlas
Revision as of 19:05, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

10 164.gif

10_164

K11a1.gif

K11a1

10 165.gif Visit 10 165's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit [ 10 165's page] at Knotilus!

Visit 10 165's page at the original Knot Atlas!

10 165 Quick Notes



Warning. In 1973 K. Perko noticed that the knots that were later labeled 10161 and 10162 in Rolfsen's tables (which were published in 1976 and were based on earlier tables by Little (1900) and Conway (1970)) are in fact the same. In our table we removed Rolfsen's 10162 and renumbered the subsequent knots, so that our 10 crossings total is 165, one less than Rolfsen's 166. Read more: [1] [2] [3] [4] [5].

Knot presentations

Planar diagram presentation X1627 X7,18,8,19 X3948 X17,3,18,2 X5,15,6,14 X9,17,10,16 X15,11,16,10 X11,5,12,4 X20,14,1,13 X12,20,13,19
Gauss code -1, 4, -3, 8, -5, 1, -2, 3, -6, 7, -8, -10, 9, 5, -7, 6, -4, 2, 10, -9
Dowker-Thistlethwaite code 6 8 14 18 16 4 -20 10 2 -12
Conway Notation [8*2:.-20]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [1][-11]
Hyperbolic Volume 11.6031
A-Polynomial See Data:10 165/A-polynomial

[edit Notes for 10 165's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 2

[edit Notes for 10 165's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 39, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (2, 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 165. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
012345678χ
19        11
17       2 -2
15      21 1
13     42  -2
11    32   1
9   34    1
7  33     0
5 13      2
313       -2
12        2
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[0, 1]]
Out[2]=  
0
In[3]:=
PD[Knot[0, 1]]
Out[3]=  
PD[Loop[1]]
In[4]:=
GaussCode[Knot[0, 1]]
Out[4]=  
GaussCode[]
In[5]:=
BR[Knot[0, 1]]
Out[5]=  
BR[1, {}]
In[6]:=
alex = Alexander[Knot[0, 1]][t]
Out[6]=  
1
In[7]:=
Conway[Knot[0, 1]][z]
Out[7]=  
1
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[0, 1], Knot[11, NonAlternating, 34], Knot[11, NonAlternating, 42]}
In[9]:=
{KnotDet[Knot[0, 1]], KnotSignature[Knot[0, 1]]}
Out[9]=  
{1, 0}
In[10]:=
J=Jones[Knot[0, 1]][q]
Out[10]=  
1
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[0, 1]}
In[12]:=
A2Invariant[Knot[0, 1]][q]
Out[12]=  
     -2    2
1 + q   + q
In[13]:=
Kauffman[Knot[0, 1]][a, z]
Out[13]=  
1
In[14]:=
{Vassiliev[2][Knot[0, 1]], Vassiliev[3][Knot[0, 1]]}
Out[14]=  
{0, 0}
In[15]:=
Kh[Knot[0, 1]][q, t]
Out[15]=  
1

- + q

q