4 1
|  |  | 
|   | Visit 4 1's page at the  Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 4 1's page at Knotilus! Visit 4 1's page at the original Knot Atlas! 4_1 is also known as "the Figure Eight knot", as some people think it looks like a figure `8' in one of its common projections. See e.g. [1] . For two 4_1 knots along a closed loop, see 10_59, 10_60, K12a975, and K12a991. | 
|   A Neli-Kolam with 3x2 dot array[1] | |||
|   Thurston's Trick [2] | 
Non-prime (compound) versions
Knot presentations
| Planar diagram presentation | X4251 X8615 X6374 X2738 | 
| Gauss code | 1, -4, 3, -1, 2, -3, 4, -2 | 
| Dowker-Thistlethwaite code | 4 6 8 2 | 
| Conway Notation | [22] | 
Three dimensional invariants
| 
 | 
Four dimensional invariants
| 
 | 
Polynomial invariants
A1 Invariants.
| Weight | Invariant | 
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | 
A2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 | |
| 3,0 | 
A3 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0 | |
| 1,0,0 | |
| 1,0,1 | 
A4 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 | 
B2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
B3 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0 | 
B4 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0,0 | 
C3 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0 | 
C4 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0,0 | 
D4 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 | 
G2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | 
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
 | 
| In[3]:= | K = Knot["4 1"]; | 
| In[4]:= | Alexander[K][t] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | 
| In[5]:= | Conway[K][z] | 
| Out[5]= | 
| In[6]:= | Alexander[K, 2][t] | 
| KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005. | 
| Out[6]= | 
| In[7]:= | {KnotDet[K], KnotSignature[K]} | 
| Out[7]= | { 5, 0 } | 
| In[8]:= | Jones[K][q] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[8]= | 
| In[9]:= | HOMFLYPT[K][a, z] | 
| KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison. | 
| Out[9]= | 
| In[10]:= | Kauffman[K][a, z] | 
| KnotTheory::loading: Loading precomputed data in Kauffman4Knots`. | 
| Out[10]= | 
Vassiliev invariants
| V2 and V3: | (-1, 0) | 
| V2,1 through V6,9: | 
 | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 4 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | 
 | 
| Integral Khovanov Homology (db, data source) |  | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
| In[1]:= | << KnotTheory` | 
| Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
| In[2]:= | Crossings[Knot[4, 1]] | 
| Out[2]= | 4 | 
| In[3]:= | PD[Knot[4, 1]] | 
| Out[3]= | PD[X[4, 2, 5, 1], X[8, 6, 1, 5], X[6, 3, 7, 4], X[2, 7, 3, 8]] | 
| In[4]:= | GaussCode[Knot[4, 1]] | 
| Out[4]= | GaussCode[1, -4, 3, -1, 2, -3, 4, -2] | 
| In[5]:= | BR[Knot[4, 1]] | 
| Out[5]= | BR[3, {-1, 2, -1, 2}] | 
| In[6]:= | alex = Alexander[Knot[4, 1]][t] | 
| Out[6]= | 1 | 
| In[7]:= | Conway[Knot[4, 1]][z] | 
| Out[7]= | 2 1 - z | 
| In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] | 
| Out[8]= | {Knot[4, 1]} | 
| In[9]:= | {KnotDet[Knot[4, 1]], KnotSignature[Knot[4, 1]]} | 
| Out[9]= | {5, 0} | 
| In[10]:= | J=Jones[Knot[4, 1]][q] | 
| Out[10]= | -2 1 2 | 
| In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] | 
| Out[11]= | {Knot[4, 1], Knot[11, NonAlternating, 19]} | 
| In[12]:= | A2Invariant[Knot[4, 1]][q] | 
| Out[12]= | -8 -6 6 8 -1 + q + q + q + q | 
| In[13]:= | Kauffman[Knot[4, 1]][a, z] | 
| Out[13]= | 2 3-2 2 z 2 z 2 2 z 3 | 
| In[14]:= | {Vassiliev[2][Knot[4, 1]], Vassiliev[3][Knot[4, 1]]} | 
| Out[14]= | {0, 0} | 
| In[15]:= | Kh[Knot[4, 1]][q, t] | 
| Out[15]= | 1 1 1 5 2 | 













