4 1

From Knot Atlas
Revision as of 19:05, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

3 1.gif

3_1

5 1.gif

5_1

4 1.gif Visit 4 1's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 4 1's page at Knotilus!

Visit 4 1's page at the original Knot Atlas!

4_1 is also known as "the Figure Eight knot", as some people think it looks like a figure `8' in one of its common projections. See e.g. [1] .

For two 4_1 knots along a closed loop, see 10_59, 10_60, K12a975, and K12a991.



Square depiction
Alternate square depiction
3D depiction
In "figure 8" form
A Neli-Kolam with 3x2 dot array[1]
In curved symmetrical form
Quasi-Celtic depiction
Symmetrical from parametric equation
Thurston's Trick [2]
Cylindrical depiction

Non-prime (compound) versions

Knot presentations

Planar diagram presentation X4251 X8615 X6374 X2738
Gauss code 1, -4, 3, -1, 2, -3, 4, -2
Dowker-Thistlethwaite code 4 6 8 2
Conway Notation [22]

Three dimensional invariants

Symmetry type Fully amphicheiral
Unknotting number 1
3-genus 1
Bridge index 2
Super bridge index 3
Nakanishi index 1
Maximal Thurston-Bennequin number [-3][-3]
Hyperbolic Volume 2.02988
A-Polynomial See Data:4 1/A-polynomial

[edit Notes for 4 1's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 4 1's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 5, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (-1, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 4 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-1012χ
5    11
3     0
1  11 0
-1 11  0
-3     0
-51    1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[4, 1]]
Out[2]=  
4
In[3]:=
PD[Knot[4, 1]]
Out[3]=  
PD[X[4, 2, 5, 1], X[8, 6, 1, 5], X[6, 3, 7, 4], X[2, 7, 3, 8]]
In[4]:=
GaussCode[Knot[4, 1]]
Out[4]=  
GaussCode[1, -4, 3, -1, 2, -3, 4, -2]
In[5]:=
BR[Knot[4, 1]]
Out[5]=  
BR[3, {-1, 2, -1, 2}]
In[6]:=
alex = Alexander[Knot[4, 1]][t]
Out[6]=  
    1

3 - - - t

t
In[7]:=
Conway[Knot[4, 1]][z]
Out[7]=  
     2
1 - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[4, 1]}
In[9]:=
{KnotDet[Knot[4, 1]], KnotSignature[Knot[4, 1]]}
Out[9]=  
{5, 0}
In[10]:=
J=Jones[Knot[4, 1]][q]
Out[10]=  
     -2   1        2

1 + q - - - q + q

q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[4, 1], Knot[11, NonAlternating, 19]}
In[12]:=
A2Invariant[Knot[4, 1]][q]
Out[12]=  
      -8    -6    6    8
-1 + q   + q   + q  + q
In[13]:=
Kauffman[Knot[4, 1]][a, z]
Out[13]=  
                                  2            3
     -2    2   z            2   z     2  2   z       3

-1 - a - a - - - a z + 2 z + -- + a z + -- + a z

               a                 2           a
a
In[14]:=
{Vassiliev[2][Knot[4, 1]], Vassiliev[3][Knot[4, 1]]}
Out[14]=  
{0, 0}
In[15]:=
Kh[Knot[4, 1]][q, t]
Out[15]=  
1         1      1           5  2

- + q + ----- + --- + q t + q t q 5 2 q t

q t