0 1
From Knot Atlas
Jump to navigationJump to search
|
|
![]() |
Visit 0 1's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit [ 0 1's page] at Knotilus! Visit 0 1's page at the original Knot Atlas! Also known as "the Unknot" |
![]() A temple symbol MANJI in a Japanese map[1] |
![]() A toroidal bubble in glass [2] |
|||
Knot presentations
Planar diagram presentation | |
Gauss code | |
Dowker-Thistlethwaite code | |
Conway Notation | Data:0 1/Conway Notation |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Vassiliev invariants
V2 and V3: | (0, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 0 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | Data:0 1/KhovanovTable |
Integral Khovanov Homology
(db, data source) |
Data:0 1/Integral Khovanov Homology |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[0, 1]] |
Out[2]= | 0 |
In[3]:= | PD[Knot[0, 1]] |
Out[3]= | PD[Loop[1]] |
In[4]:= | GaussCode[Knot[0, 1]] |
Out[4]= | GaussCode[] |
In[5]:= | BR[Knot[0, 1]] |
Out[5]= | BR[1, {}] |
In[6]:= | alex = Alexander[Knot[0, 1]][t] |
Out[6]= | 1 |
In[7]:= | Conway[Knot[0, 1]][z] |
Out[7]= | 1 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[0, 1], Knot[11, NonAlternating, 34], Knot[11, NonAlternating, 42]} |
In[9]:= | {KnotDet[Knot[0, 1]], KnotSignature[Knot[0, 1]]} |
Out[9]= | {1, 0} |
In[10]:= | J=Jones[Knot[0, 1]][q] |
Out[10]= | 1 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[0, 1]} |
In[12]:= | A2Invariant[Knot[0, 1]][q] |
Out[12]= | -2 2 1 + q + q |
In[13]:= | Kauffman[Knot[0, 1]][a, z] |
Out[13]= | 1 |
In[14]:= | {Vassiliev[2][Knot[0, 1]], Vassiliev[3][Knot[0, 1]]} |
Out[14]= | {0, 0} |
In[15]:= | Kh[Knot[0, 1]][q, t] |
Out[15]= | 1 |