5 2
|
|
|
|
Visit 5 2's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 5 2's page at Knotilus! Visit 5 2's page at the original Knot Atlas! 5_2 is also known as the 3-twist knot. The Bowstring knot of practical knot tying deforms to 5_2. |
Knot presentations
| Planar diagram presentation | X1425 X3849 X5,10,6,1 X9,6,10,7 X7283 |
| Gauss code | -1, 5, -2, 1, -3, 4, -5, 2, -4, 3 |
| Dowker-Thistlethwaite code | 4 8 10 2 6 |
| Conway Notation | [32] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ 2 t+2 t^{-1} -3 }[/math] |
| Conway polynomial | [math]\displaystyle{ 2 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 7, -2 } |
| Jones polynomial | [math]\displaystyle{ - q^{-6} + q^{-5} - q^{-4} +2 q^{-3} - q^{-2} + q^{-1} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -a^6+a^4 z^2+a^4+a^2 z^2+a^2 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ a^7 z^3-2 a^7 z+a^6 z^4-2 a^6 z^2+a^6+2 a^5 z^3-2 a^5 z+a^4 z^4-a^4 z^2+a^4+a^3 z^3+a^2 z^2-a^2 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{20}-q^{18}+q^{12}+q^{10}+q^8+q^6+q^2 }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{100}+q^{96}-q^{94}-q^{92}+q^{90}-q^{88}-q^{84}-q^{82}-q^{78}-q^{76}-q^{74}-q^{72}-q^{68}-q^{66}+q^{64}+q^{60}+q^{56}+q^{54}+2 q^{50}-q^{48}+2 q^{46}+q^{44}+q^{40}+q^{34}+2 q^{24}+q^{20}+q^{14}+q^{10} }[/math] |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | [math]\displaystyle{ -q^{13}+q^7+q^5+q }[/math] |
| 2 | [math]\displaystyle{ q^{36}-q^{32}-q^{26}-q^{20}+q^{14}+q^{10}+2 q^8+q^2 }[/math] |
| 3 | [math]\displaystyle{ -q^{69}+q^{65}+q^{63}-q^{59}+q^{55}-q^{51}+q^{47}+q^{45}-q^{43}-q^{37}-2 q^{35}-q^{33}-q^{31}+q^{27}+q^{21}+2 q^{19}-q^{15}+q^{13}+2 q^{11}+q^9+q^3 }[/math] |
| 4 | [math]\displaystyle{ q^{112}-q^{108}-q^{106}-q^{104}+q^{102}+q^{100}+q^{98}-2 q^{94}+q^{90}+q^{88}-2 q^{84}-q^{82}+2 q^{78}+q^{76}-q^{74}+q^{70}+2 q^{68}+q^{66}-q^{64}-q^{56}-2 q^{54}-q^{52}-q^{50}-q^{48}+q^{44}-q^{42}-q^{40}-q^{38}+2 q^{34}-q^{30}-q^{28}+q^{26}+4 q^{24}+q^{22}-q^{18}+2 q^{14}+q^{12}+q^{10}+q^4 }[/math] |
| 5 | [math]\displaystyle{ -q^{165}+q^{161}+q^{159}+q^{157}-q^{153}-2 q^{151}-q^{149}+q^{145}+2 q^{143}+q^{141}-q^{139}-2 q^{137}-q^{135}+q^{133}+2 q^{131}+2 q^{129}-2 q^{125}-3 q^{123}-q^{121}+q^{119}+2 q^{117}+q^{115}-2 q^{113}-2 q^{111}-q^{109}+q^{107}+3 q^{105}+q^{103}-q^{101}-q^{99}+q^{95}+2 q^{93}+q^{91}-q^{89}+q^{85}+q^{83}+q^{81}-q^{77}-q^{73}-q^{71}-q^{69}-q^{63}-2 q^{61}-2 q^{59}-2 q^{57}+2 q^{53}+q^{51}-q^{49}-2 q^{47}-2 q^{45}+q^{43}+3 q^{41}+3 q^{39}-3 q^{35}-2 q^{33}+3 q^{29}+3 q^{27}+2 q^{25}-q^{21}+q^{17}+q^{15}+q^{13}+q^{11}+q^5 }[/math] |
| 6 | [math]\displaystyle{ q^{228}-q^{224}-q^{222}-q^{220}+2 q^{214}+2 q^{212}+q^{210}-q^{206}-2 q^{204}-3 q^{202}+q^{198}+2 q^{196}+2 q^{194}+q^{192}-q^{190}-4 q^{188}-2 q^{186}+2 q^{182}+3 q^{180}+4 q^{178}+q^{176}-3 q^{174}-3 q^{172}-3 q^{170}+2 q^{166}+4 q^{164}+2 q^{162}-2 q^{160}-3 q^{158}-4 q^{156}-q^{154}+2 q^{152}+4 q^{150}+2 q^{148}-q^{146}-2 q^{144}-3 q^{142}-q^{140}+q^{138}+3 q^{136}+q^{134}-2 q^{132}-2 q^{130}-2 q^{128}+q^{124}+2 q^{122}+q^{120}-q^{118}+q^{116}+q^{114}+2 q^{112}+2 q^{110}+2 q^{108}+q^{106}-q^{98}-q^{96}-q^{94}+q^{90}-q^{88}-q^{86}-2 q^{84}-2 q^{82}-2 q^{80}+3 q^{76}+q^{74}-2 q^{70}-4 q^{68}-4 q^{66}-q^{64}+4 q^{62}+3 q^{60}+2 q^{58}-2 q^{56}-4 q^{54}-5 q^{52}-q^{50}+5 q^{48}+4 q^{46}+4 q^{44}+q^{42}-2 q^{40}-4 q^{38}-2 q^{36}+2 q^{34}+2 q^{32}+3 q^{30}+2 q^{28}+q^{26}-q^{24}+q^{20}+q^{16}+q^{14}+q^{12}+q^6 }[/math] |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ -q^{20}-q^{18}+q^{12}+q^{10}+q^8+q^6+q^2 }[/math] |
| 0,2 | [math]\displaystyle{ q^{50}+q^{48}+q^{46}-q^{44}-q^{42}-q^{40}-q^{38}-q^{36}-q^{34}-q^{30}-q^{28}-q^{26}+2 q^{20}+2 q^{18}+2 q^{16}+2 q^{14}+2 q^{12}+q^{10}+q^4 }[/math] |
| 1,0 | [math]\displaystyle{ -q^{20}-q^{18}+q^{12}+q^{10}+q^8+q^6+q^2 }[/math] |
| 1,1 | [math]\displaystyle{ q^{52}+2 q^{48}-2 q^{46}-2 q^{42}+2 q^{34}-2 q^{32}-5 q^{28}-4 q^{24}+2 q^{22}+q^{20}+2 q^{18}+4 q^{16}+2 q^{14}+4 q^{12}+2 q^8+q^4 }[/math] |
| 2,0 | [math]\displaystyle{ q^{50}+q^{48}+q^{46}-q^{44}-q^{42}-q^{40}-q^{38}-q^{36}-q^{34}-q^{30}-q^{28}-q^{26}+2 q^{20}+2 q^{18}+2 q^{16}+2 q^{14}+2 q^{12}+q^{10}+q^4 }[/math] |
| 3,0 | [math]\displaystyle{ -q^{90}-q^{88}-q^{86}+2 q^{82}+2 q^{80}+2 q^{78}-q^{66}+q^{62}+2 q^{60}+q^{58}-q^{54}-q^{52}-3 q^{50}-4 q^{48}-5 q^{46}-4 q^{44}-3 q^{42}-2 q^{40}+2 q^{36}+3 q^{34}+2 q^{32}+3 q^{30}+2 q^{28}+3 q^{26}+2 q^{24}+q^{22}+q^{20}+2 q^{18}+3 q^{16}+2 q^{14}+q^6 }[/math] |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,0,1 | [math]\displaystyle{ -q^{27}-q^{25}-q^{23}+q^{17}+q^{15}+q^{13}+q^{11}+q^9+q^7+q^3 }[/math] |
| 0,1,0 | [math]\displaystyle{ q^{42}+q^{38}-2 q^{34}-2 q^{32}-2 q^{30}-2 q^{28}-q^{26}+q^{24}+q^{22}+2 q^{20}+q^{18}+2 q^{16}+q^{14}+q^{12}+2 q^{10}+q^8+q^4 }[/math] |
| 1,0,0 | [math]\displaystyle{ -q^{27}-q^{25}-q^{23}+q^{17}+q^{15}+q^{13}+q^{11}+q^9+q^7+q^3 }[/math] |
| 1,0,1 | [math]\displaystyle{ q^{68}+2 q^{64}-q^{60}-3 q^{56}+q^{54}-q^{52}+q^{50}+3 q^{48}-q^{46}+q^{44}-2 q^{42}-4 q^{40}-4 q^{38}-4 q^{36}-5 q^{34}-3 q^{32}-q^{30}+5 q^{26}+3 q^{24}+7 q^{22}+6 q^{20}+3 q^{18}+5 q^{16}+q^{14}+2 q^{12}+2 q^{10}+q^6 }[/math] |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,0,0,1 | [math]\displaystyle{ -q^{34}-q^{32}-q^{30}-q^{28}+q^{22}+q^{20}+q^{18}+q^{16}+q^{14}+q^{12}+q^{10}+q^8+q^4 }[/math] |
| 0,1,0,0 | [math]\displaystyle{ q^{56}+q^{54}+q^{52}+q^{50}+q^{48}-q^{46}-3 q^{44}-4 q^{42}-4 q^{40}-4 q^{38}-3 q^{36}+q^{32}+2 q^{30}+3 q^{28}+3 q^{26}+2 q^{24}+2 q^{22}+2 q^{20}+2 q^{18}+q^{16}+2 q^{14}+2 q^{12}+q^{10}+q^6 }[/math] |
| 1,0,0,0 | [math]\displaystyle{ -q^{34}-q^{32}-q^{30}-q^{28}+q^{22}+q^{20}+q^{18}+q^{16}+q^{14}+q^{12}+q^{10}+q^8+q^4 }[/math] |
A5 Invariants.
| Weight | Invariant |
|---|---|
| 0,0,0,0,1 | [math]\displaystyle{ -q^{41}-q^{39}-q^{37}-q^{35}-q^{33}+q^{27}+q^{25}+q^{23}+q^{21}+q^{19}+q^{17}+q^{15}+q^{13}+q^{11}+q^9+q^5 }[/math] |
| 1,0,0,0,0 | [math]\displaystyle{ -q^{41}-q^{39}-q^{37}-q^{35}-q^{33}+q^{27}+q^{25}+q^{23}+q^{21}+q^{19}+q^{17}+q^{15}+q^{13}+q^{11}+q^9+q^5 }[/math] |
A6 Invariants.
| Weight | Invariant |
|---|---|
| 0,0,0,0,0,1 | [math]\displaystyle{ -q^{48}-q^{46}-q^{44}-q^{42}-q^{40}-q^{38}+q^{32}+q^{30}+q^{28}+q^{26}+q^{24}+q^{22}+q^{20}+q^{18}+q^{16}+q^{14}+q^{12}+q^{10}+q^6 }[/math] |
| 1,0,0,0,0,0 | [math]\displaystyle{ -q^{48}-q^{46}-q^{44}-q^{42}-q^{40}-q^{38}+q^{32}+q^{30}+q^{28}+q^{26}+q^{24}+q^{22}+q^{20}+q^{18}+q^{16}+q^{14}+q^{12}+q^{10}+q^6 }[/math] |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ -q^{42}-q^{38}+q^{26}-q^{24}+q^{22}+q^{18}+q^{14}+q^{12}+q^8+q^4 }[/math] |
| 1,0 | [math]\displaystyle{ q^{68}+q^{60}-q^{56}-q^{54}-q^{52}-q^{50}-q^{48}-q^{46}-q^{44}+q^{34}+q^{32}+q^{30}+q^{26}+q^{24}+q^{22}+q^{18}+q^{16}+q^{14}+q^6 }[/math] |
B3 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0 | [math]\displaystyle{ q^{100}+q^{92}-q^{82}-q^{80}-q^{78}-q^{76}-q^{74}-q^{72}-q^{70}-q^{68}-q^{66}-q^{64}+q^{56}+q^{54}+q^{50}+q^{48}+q^{46}+q^{42}+q^{40}+q^{38}+q^{34}+q^{30}+q^{26}+q^{24}+q^{22}+q^{18}+q^{10} }[/math] |
B4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | [math]\displaystyle{ q^{132}+q^{124}-q^{110}-q^{106}-q^{104}-q^{102}-q^{100}-q^{98}-q^{96}-q^{94}-q^{92}-q^{90}-q^{88}-q^{86}+q^{74}+q^{72}+q^{70}+q^{66}+q^{64}+q^{62}+q^{58}+q^{56}+q^{54}+q^{50}+q^{46}+q^{42}+q^{38}+q^{34}+q^{32}+q^{30}+q^{26}+q^{22}+q^{14} }[/math] |
C3 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0 | [math]\displaystyle{ -q^{58}-q^{54}-q^{48}+q^{30}+q^{26}+q^{22}+q^{20}+q^{18}+q^{16}+q^{12}+q^{10}+q^6 }[/math] |
C4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | [math]\displaystyle{ -q^{74}-q^{70}-q^{62}-q^{60}-q^{48}+q^{42}+q^{38}+q^{34}+q^{30}+q^{28}+q^{26}+q^{24}+q^{22}+q^{20}+q^{16}+q^{14}+q^{12}+q^8 }[/math] |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | [math]\displaystyle{ q^{58}+q^{54}-q^{48}-2 q^{46}-2 q^{44}-2 q^{42}-2 q^{40}-2 q^{38}+2 q^{32}+q^{30}+2 q^{28}+q^{26}+2 q^{24}+q^{22}+q^{20}+q^{18}+q^{16}+2 q^{14}+q^{12}+q^{10}+q^6 }[/math] |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ q^{204}+q^{192}+q^{190}+q^{188}-q^{186}-q^{184}-q^{176}+q^{172}-2 q^{168}-q^{166}-q^{156}+q^{154}+q^{152}+q^{142}+q^{140}+q^{138}+2 q^{136}+q^{134}-q^{132}-2 q^{130}-q^{122}-q^{120}-q^{118}-2 q^{116}-2 q^{114}-3 q^{112}-2 q^{110}-q^{108}-2 q^{106}-2 q^{104}-q^{102}-q^{100}-q^{98}-q^{96}-2 q^{94}-2 q^{92}+q^{88}+q^{86}+2 q^{84}+q^{82}+q^{78}+2 q^{74}+2 q^{72}+2 q^{70}+2 q^{68}+3 q^{66}+2 q^{64}+q^{62}+q^{60}+2 q^{58}+2 q^{56}+q^{54}+q^{50}+3 q^{48}+q^{46}+q^{36}+q^{34}+q^{32}+q^{30}+q^{18} }[/math] |
| 1,0 | [math]\displaystyle{ q^{100}+q^{96}-q^{94}-q^{92}+q^{90}-q^{88}-q^{84}-q^{82}-q^{78}-q^{76}-q^{74}-q^{72}-q^{68}-q^{66}+q^{64}+q^{60}+q^{56}+q^{54}+2 q^{50}-q^{48}+2 q^{46}+q^{44}+q^{40}+q^{34}+2 q^{24}+q^{20}+q^{14}+q^{10} }[/math] |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["5 2"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ 2 t+2 t^{-1} -3 }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ 2 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 7, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ - q^{-6} + q^{-5} - q^{-4} +2 q^{-3} - q^{-2} + q^{-1} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -a^6+a^4 z^2+a^4+a^2 z^2+a^2 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ a^7 z^3-2 a^7 z+a^6 z^4-2 a^6 z^2+a^6+2 a^5 z^3-2 a^5 z+a^4 z^4-a^4 z^2+a^4+a^3 z^3+a^2 z^2-a^2 }[/math] |
Vassiliev invariants
| V2 and V3: | (2, -3) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-2 is the signature of 5 2. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[5, 2]] |
Out[2]= | 5 |
In[3]:= | PD[Knot[5, 2]] |
Out[3]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 10, 6, 1], X[9, 6, 10, 7], X[7, 2, 8, 3]] |
In[4]:= | GaussCode[Knot[5, 2]] |
Out[4]= | GaussCode[-1, 5, -2, 1, -3, 4, -5, 2, -4, 3] |
In[5]:= | BR[Knot[5, 2]] |
Out[5]= | BR[3, {-1, -1, -1, -2, 1, -2}] |
In[6]:= | alex = Alexander[Knot[5, 2]][t] |
Out[6]= | 2 |
In[7]:= | Conway[Knot[5, 2]][z] |
Out[7]= | 2 1 + 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[5, 2]} |
In[9]:= | {KnotDet[Knot[5, 2]], KnotSignature[Knot[5, 2]]} |
Out[9]= | {7, -2} |
In[10]:= | J=Jones[Knot[5, 2]][q] |
Out[10]= | -6 -5 -4 2 -2 1 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[5, 2], Knot[11, NonAlternating, 57]} |
In[12]:= | A2Invariant[Knot[5, 2]][q] |
Out[12]= | -20 -18 -12 -10 -8 -6 -2 -q - q + q + q + q + q + q |
In[13]:= | Kauffman[Knot[5, 2]][a, z] |
Out[13]= | 2 4 6 5 7 2 2 4 2 6 2 3 3 |
In[14]:= | {Vassiliev[2][Knot[5, 2]], Vassiliev[3][Knot[5, 2]]} |
Out[14]= | {0, -3} |
In[15]:= | Kh[Knot[5, 2]][q, t] |
Out[15]= | -3 1 1 1 1 1 1 1 |





