6 2

From Knot Atlas
Revision as of 19:09, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

6 1.gif

6_1

6 3.gif

6_3

6 2.gif Visit 6 2's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 6 2's page at Knotilus!

Visit 6 2's page at the original Knot Atlas!

Dror likes to call 6_2 "The Miller Institute Knot", as it is the logo of the Miller Institute for Basic Research.

The bowline knot of practical knot tying deforms to 6_2.



The Miller Institute Mug [1]
Simple square depiction
3D depiction

Knot presentations

Planar diagram presentation X1425 X5,10,6,11 X3948 X9,3,10,2 X7,12,8,1 X11,6,12,7
Gauss code -1, 4, -3, 1, -2, 6, -5, 3, -4, 2, -6, 5
Dowker-Thistlethwaite code 4 8 10 12 2 6
Conway Notation [312]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-7][-1]
Hyperbolic Volume 4.40083
A-Polynomial See Data:6 2/A-polynomial

[edit Notes for 6 2's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 6 2's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 11, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (-1, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 6 2. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-1012χ
3      11
1       0
-1    21 1
-3   11  0
-5  11   0
-7 11    0
-9 1     -1
-111      1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[6, 2]]
Out[2]=  
6
In[3]:=
PD[Knot[6, 2]]
Out[3]=  
PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], 
  X[7, 12, 8, 1], X[11, 6, 12, 7]]
In[4]:=
GaussCode[Knot[6, 2]]
Out[4]=  
GaussCode[-1, 4, -3, 1, -2, 6, -5, 3, -4, 2, -6, 5]
In[5]:=
BR[Knot[6, 2]]
Out[5]=  
BR[3, {-1, -1, -1, 2, -1, 2}]
In[6]:=
alex = Alexander[Knot[6, 2]][t]
Out[6]=  
      -2   3          2

-3 - t + - + 3 t - t

t
In[7]:=
Conway[Knot[6, 2]][z]
Out[7]=  
     2    4
1 - z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[6, 2]}
In[9]:=
{KnotDet[Knot[6, 2]], KnotSignature[Knot[6, 2]]}
Out[9]=  
{11, -2}
In[10]:=
J=Jones[Knot[6, 2]][q]
Out[10]=  
      -5   2    2    2    2

-1 + q - -- + -- - -- + - + q

           4    3    2   q
q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[6, 2]}
In[12]:=
A2Invariant[Knot[6, 2]][q]
Out[12]=  
     -16    -8    -4    -2    2    4
1 + q    - q   - q   + q   + q  + q
In[13]:=
Kauffman[Knot[6, 2]][a, z]
Out[13]=  
       2    4    3      5        2      2  2      4  2    6  2

2 + 2 a + a - a z - a z - 3 z - 6 a z - 2 a z + a z -

      3      5  3    4      2  4      4  4      5    3  5
2 a z + 2 a z + z + 3 a z + 2 a z + a z + a z
In[14]:=
{Vassiliev[2][Knot[6, 2]], Vassiliev[3][Knot[6, 2]]}
Out[14]=  
{0, 1}
In[15]:=
Kh[Knot[6, 2]][q, t]
Out[15]=  
 -3   2     1        1       1       1       1      1      1     t

q + - + ------ + ----- + ----- + ----- + ----- + ---- + ---- + - +

     q    11  4    9  3    7  3    7  2    5  2    5      3     q
         q   t    q  t    q  t    q  t    q  t    q  t   q  t

  3  2
q t