6 3

From Knot Atlas
Revision as of 19:10, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

6 2.gif

6_2

7 1.gif

7_1

6 3.gif Visit 6 3's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 6 3's page at Knotilus!

Visit 6 3's page at the original Knot Atlas!

6 3 Quick Notes



3D depiction
Irish knot, sum of four 6.3

Knot presentations

Planar diagram presentation X4251 X8493 X12,9,1,10 X10,5,11,6 X6,11,7,12 X2837
Gauss code 1, -6, 2, -1, 4, -5, 6, -2, 3, -4, 5, -3
Dowker-Thistlethwaite code 4 8 10 2 12 6
Conway Notation [2112]

Three dimensional invariants

Symmetry type Fully amphicheiral
Unknotting number 1
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-4][-4]
Hyperbolic Volume 5.69302
A-Polynomial See Data:6 3/A-polynomial

[edit Notes for 6 3's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 6 3's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 13, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (1, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 6 3. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-10123χ
7      1-1
5     1 1
3    11 0
1   21  1
-1  12   1
-3 11    0
-5 1     1
-71      -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[6, 3]]
Out[2]=  
6
In[3]:=
PD[Knot[6, 3]]
Out[3]=  
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 9, 1, 10], X[10, 5, 11, 6], 
  X[6, 11, 7, 12], X[2, 8, 3, 7]]
In[4]:=
GaussCode[Knot[6, 3]]
Out[4]=  
GaussCode[1, -6, 2, -1, 4, -5, 6, -2, 3, -4, 5, -3]
In[5]:=
BR[Knot[6, 3]]
Out[5]=  
BR[3, {-1, -1, 2, -1, 2, 2}]
In[6]:=
alex = Alexander[Knot[6, 3]][t]
Out[6]=  
     -2   3          2

5 + t - - - 3 t + t

t
In[7]:=
Conway[Knot[6, 3]][z]
Out[7]=  
     2    4
1 + z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[6, 3], Knot[11, NonAlternating, 12]}
In[9]:=
{KnotDet[Knot[6, 3]], KnotSignature[Knot[6, 3]]}
Out[9]=  
{13, 0}
In[10]:=
J=Jones[Knot[6, 3]][q]
Out[10]=  
     -3   2    2            2    3

3 - q + -- - - - 2 q + 2 q - q

          2   q
q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[6, 3]}
In[12]:=
A2Invariant[Knot[6, 3]][q]
Out[12]=  
     -10   2       2    10

1 - q + -- + 2 q - q

           2
q
In[13]:=
Kauffman[Knot[6, 3]][a, z]
Out[13]=  
                                                   2              3
    -2    2   z    2 z            3        2   3 z       2  2   z

3 + a + a - -- - --- - 2 a z - a z - 6 z - ---- - 3 a z + -- +

               3    a                            2               3
              a                                 a               a

  3                            4              5
 z       3    3  3      4   2 z       2  4   z       5
 -- + a z  + a  z  + 4 z  + ---- + 2 a  z  + -- + a z
 a                            2              a
a
In[14]:=
{Vassiliev[2][Knot[6, 3]], Vassiliev[3][Knot[6, 3]]}
Out[14]=  
{0, 0}
In[15]:=
Kh[Knot[6, 3]][q, t]
Out[15]=  
2           1       1       1      1      1           3      3  2

- + 2 q + ----- + ----- + ----- + ---- + --- + q t + q t + q t + q 7 3 5 2 3 2 3 q t

         q  t    q  t    q  t    q  t

  5  2    7  3
q t + q t