7 1

From Knot Atlas
Revision as of 19:10, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

6 3.gif

6_3

7 2.gif

7_2

7 1.gif Visit 7 1's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 7 1's page at Knotilus!

Visit 7 1's page at the original Knot Atlas!

7_1 should perhaps be called "The Septafoil Knot", following the trefoil knot and the cinquefoil knot. See also T(7,2).



Interlaced form of 7/2 star polygon or "septagram"
Decorative interlaced form of 7/2 star polygon or "septagram"
3D depiction
Heptagram of intersecting circles.

Knot presentations

Planar diagram presentation X1829 X3,10,4,11 X5,12,6,13 X7,14,8,1 X9,2,10,3 X11,4,12,5 X13,6,14,7
Gauss code -1, 5, -2, 6, -3, 7, -4, 1, -5, 2, -6, 3, -7, 4
Dowker-Thistlethwaite code 8 10 12 14 2 4 6
Conway Notation [7]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 3
3-genus 3
Bridge index 2
Super bridge index 4
Nakanishi index 1
Maximal Thurston-Bennequin number Failed to parse (syntax error): {\displaystyle \text{$\$$Failed}}
Hyperbolic Volume Not hyperbolic
A-Polynomial See Data:7 1/A-polynomial

[edit Notes for 7 1's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -6

[edit Notes for 7 1's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 7, -6 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (6, -14)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -6 is the signature of 7 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-7-6-5-4-3-2-10χ
-5       11
-7       11
-9     1  1
-11        0
-13   11   0
-15        0
-17 11     0
-19        0
-211       -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[7, 1]]
Out[2]=  
7
In[3]:=
PD[Knot[7, 1]]
Out[3]=  
PD[X[1, 8, 2, 9], X[3, 10, 4, 11], X[5, 12, 6, 13], X[7, 14, 8, 1], 
  X[9, 2, 10, 3], X[11, 4, 12, 5], X[13, 6, 14, 7]]
In[4]:=
GaussCode[Knot[7, 1]]
Out[4]=  
GaussCode[-1, 5, -2, 6, -3, 7, -4, 1, -5, 2, -6, 3, -7, 4]
In[5]:=
BR[Knot[7, 1]]
Out[5]=  
BR[2, {-1, -1, -1, -1, -1, -1, -1}]
In[6]:=
alex = Alexander[Knot[7, 1]][t]
Out[6]=  
      -3    -2   1        2    3

-1 + t - t + - + t - t + t

t
In[7]:=
Conway[Knot[7, 1]][z]
Out[7]=  
       2      4    6
1 + 6 z  + 5 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[7, 1]}
In[9]:=
{KnotDet[Knot[7, 1]], KnotSignature[Knot[7, 1]]}
Out[9]=  
{7, -6}
In[10]:=
J=Jones[Knot[7, 1]][q]
Out[10]=  
  -10    -9    -8    -7    -6    -5    -3
-q    + q   - q   + q   - q   + q   + q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[7, 1]}
In[12]:=
A2Invariant[Knot[7, 1]][q]
Out[12]=  
  -30    -28    -26    -18    -16    2     -12    -10

-q - q - q + q + q + --- + q + q

                                    14
q
In[13]:=
Kauffman[Knot[7, 1]][a, z]
Out[13]=  
    6      8      7      9      11      13         6  2      8  2

-4 a - 3 a + 3 a z + a z - a z + a z + 10 a z + 7 a z -

    10  2    12  2      7  3      9  3    11  3      6  4      8  4
 2 a   z  + a   z  - 4 a  z  - 3 a  z  + a   z  - 6 a  z  - 5 a  z  + 

  10  4    7  5    9  5    6  6    8  6
a z + a z + a z + a z + a z
In[14]:=
{Vassiliev[2][Knot[7, 1]], Vassiliev[3][Knot[7, 1]]}
Out[14]=  
{0, -14}
In[15]:=
Kh[Knot[7, 1]][q, t]
Out[15]=  
 -7    -5     1        1        1        1        1        1

q + q + ------ + ------ + ------ + ------ + ------ + -----

            21  7    17  6    17  5    13  4    13  3    9  2
q t q t q t q t q t q t