10 150
|
|
|
|
Visit 10 150's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 150's page at Knotilus! Visit 10 150's page at the original Knot Atlas! |
10 150 Further Notes and Views
Knot presentations
| Planar diagram presentation | X4251 X8493 X5,12,6,13 X9,17,10,16 X17,1,18,20 X13,19,14,18 X19,15,20,14 X15,11,16,10 X11,6,12,7 X2837 |
| Gauss code | 1, -10, 2, -1, -3, 9, 10, -2, -4, 8, -9, 3, -6, 7, -8, 4, -5, 6, -7, 5 |
| Dowker-Thistlethwaite code | 4 8 -12 2 -16 -6 -18 -10 -20 -14 |
| Conway Notation | [(21,2)(3,2-)] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^3+4 t^2-6 t+7-6 t^{-1} +4 t^{-2} - t^{-3} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6-2 z^4+z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 29, 4 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^8-3 q^7+4 q^6-5 q^5+5 q^4-4 q^3+4 q^2-2 q+1} |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6 a^{-4} +z^4 a^{-2} -4 z^4 a^{-4} +z^4 a^{-6} +3 z^2 a^{-2} -4 z^2 a^{-4} +2 z^2 a^{-6} +2 a^{-2} - a^{-4} } |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-4} +z^8 a^{-6} +2 z^7 a^{-3} +4 z^7 a^{-5} +2 z^7 a^{-7} +z^6 a^{-2} +z^6 a^{-8} -7 z^5 a^{-3} -12 z^5 a^{-5} -5 z^5 a^{-7} -4 z^4 a^{-2} -9 z^4 a^{-4} -5 z^4 a^{-6} +5 z^3 a^{-3} +8 z^3 a^{-5} +6 z^3 a^{-7} +3 z^3 a^{-9} +5 z^2 a^{-2} +8 z^2 a^{-4} +3 z^2 a^{-6} +z^2 a^{-8} +z^2 a^{-10} -2 z a^{-5} -3 z a^{-7} -z a^{-9} -2 a^{-2} - a^{-4} } |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1+ q^{-4} + q^{-6} +2 q^{-10} - q^{-12} + q^{-14} - q^{-16} - q^{-18} - q^{-22} + q^{-24} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} - q^{-4} +4 q^{-6} -5 q^{-8} +5 q^{-10} - q^{-12} -5 q^{-14} +14 q^{-16} -15 q^{-18} +14 q^{-20} -5 q^{-22} -7 q^{-24} +17 q^{-26} -19 q^{-28} +15 q^{-30} - q^{-32} -9 q^{-34} +15 q^{-36} -12 q^{-38} +2 q^{-40} +11 q^{-42} -18 q^{-44} +16 q^{-46} -7 q^{-48} -4 q^{-50} +16 q^{-52} -21 q^{-54} +21 q^{-56} -13 q^{-58} +2 q^{-60} +8 q^{-62} -17 q^{-64} +19 q^{-66} -16 q^{-68} +7 q^{-70} +3 q^{-72} -12 q^{-74} +14 q^{-76} -11 q^{-78} -3 q^{-80} +12 q^{-82} -17 q^{-84} +12 q^{-86} -2 q^{-88} -12 q^{-90} +20 q^{-92} -18 q^{-94} +11 q^{-96} -10 q^{-100} +14 q^{-102} -11 q^{-104} +6 q^{-106} +2 q^{-108} -3 q^{-110} +4 q^{-112} -3 q^{-114} + q^{-118} + q^{-120} - q^{-122} - q^{-126} - q^{-132} + q^{-134} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q- q^{-1} +2 q^{-3} + q^{-7} - q^{-11} + q^{-13} -2 q^{-15} + q^{-17} } |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^6-q^4-2 q^2+4+2 q^{-2} -5 q^{-4} +2 q^{-6} +5 q^{-8} -3 q^{-10} -2 q^{-12} +5 q^{-14} -4 q^{-18} +2 q^{-20} +2 q^{-22} -4 q^{-24} - q^{-26} +4 q^{-28} - q^{-30} -5 q^{-32} +4 q^{-34} +3 q^{-36} -5 q^{-38} + q^{-40} +2 q^{-42} - q^{-44} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{15}-q^{13}-2 q^{11}+5 q^7+4 q^5-6 q^3-9 q+2 q^{-1} +13 q^{-3} +7 q^{-5} -12 q^{-7} -12 q^{-9} +5 q^{-11} +19 q^{-13} +5 q^{-15} -17 q^{-17} -12 q^{-19} +13 q^{-21} +18 q^{-23} -7 q^{-25} -21 q^{-27} + q^{-29} +20 q^{-31} +2 q^{-33} -18 q^{-35} -5 q^{-37} +18 q^{-39} +5 q^{-41} -15 q^{-43} -9 q^{-45} +11 q^{-47} +10 q^{-49} -5 q^{-51} -15 q^{-53} -3 q^{-55} +17 q^{-57} +14 q^{-59} -13 q^{-61} -21 q^{-63} +7 q^{-65} +25 q^{-67} -21 q^{-71} -6 q^{-73} +11 q^{-75} +9 q^{-77} -6 q^{-79} -5 q^{-81} + q^{-83} +2 q^{-85} + q^{-87} - q^{-89} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1+ q^{-4} + q^{-6} +2 q^{-10} - q^{-12} + q^{-14} - q^{-16} - q^{-18} - q^{-22} + q^{-24} } |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^4-2 q^2+8-16 q^{-2} +27 q^{-4} -36 q^{-6} +48 q^{-8} -46 q^{-10} +44 q^{-12} -24 q^{-14} +6 q^{-16} +22 q^{-18} -48 q^{-20} +64 q^{-22} -80 q^{-24} +82 q^{-26} -81 q^{-28} +66 q^{-30} -48 q^{-32} +28 q^{-34} -22 q^{-38} +42 q^{-40} -52 q^{-42} +51 q^{-44} -46 q^{-46} +30 q^{-48} -18 q^{-50} +7 q^{-52} +2 q^{-54} -4 q^{-56} +4 q^{-58} -2 q^{-66} + q^{-68} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^4-1+2 q^{-4} +2 q^{-6} +4 q^{-12} +2 q^{-14} - q^{-16} - q^{-22} - q^{-24} - q^{-26} + q^{-28} - q^{-30} +2 q^{-32} + q^{-34} -2 q^{-36} - q^{-38} + q^{-40} - q^{-42} -3 q^{-44} + q^{-46} + q^{-48} +2 q^{-50} -2 q^{-52} + q^{-56} + q^{-60} - q^{-62} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1- q^{-2} +2 q^{-4} +2 q^{-6} - q^{-8} +4 q^{-10} + q^{-12} - q^{-14} +4 q^{-16} - q^{-18} - q^{-20} +2 q^{-22} -3 q^{-26} - q^{-28} -2 q^{-30} - q^{-32} -2 q^{-34} +4 q^{-38} -2 q^{-40} +2 q^{-42} +3 q^{-44} -3 q^{-46} +2 q^{-50} -2 q^{-52} - q^{-54} + q^{-56} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-1} +2 q^{-5} +2 q^{-9} + q^{-13} - q^{-21} -2 q^{-25} + q^{-27} - q^{-29} + q^{-31} } |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} + q^{-6} +3 q^{-8} + q^{-10} +2 q^{-12} +4 q^{-14} + q^{-16} +3 q^{-20} +2 q^{-22} -2 q^{-24} + q^{-26} +4 q^{-28} + q^{-30} -6 q^{-32} + q^{-34} -9 q^{-38} -5 q^{-40} + q^{-42} -4 q^{-44} -2 q^{-46} +6 q^{-48} +4 q^{-50} + q^{-52} +3 q^{-54} +5 q^{-56} -2 q^{-58} -4 q^{-60} + q^{-62} -4 q^{-66} +2 q^{-70} } |
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} +2 q^{-6} + q^{-8} + q^{-10} +2 q^{-12} + q^{-16} - q^{-18} + q^{-20} - q^{-22} - q^{-26} - q^{-30} - q^{-32} + q^{-34} - q^{-36} + q^{-38} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1- q^{-2} +4 q^{-4} -4 q^{-6} +5 q^{-8} -4 q^{-10} +5 q^{-12} -3 q^{-14} +2 q^{-16} + q^{-18} -3 q^{-20} +6 q^{-22} -8 q^{-24} +9 q^{-26} -9 q^{-28} +8 q^{-30} -7 q^{-32} +4 q^{-34} -2 q^{-36} +2 q^{-40} -4 q^{-42} +5 q^{-44} -5 q^{-46} +4 q^{-48} -4 q^{-50} +2 q^{-52} - q^{-54} + q^{-56} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^2- q^{-2} - q^{-4} +3 q^{-6} +3 q^{-8} -2 q^{-10} -3 q^{-12} +2 q^{-14} +5 q^{-16} +2 q^{-18} -5 q^{-20} -2 q^{-22} +5 q^{-24} +5 q^{-26} -2 q^{-28} -4 q^{-30} +4 q^{-34} + q^{-36} -3 q^{-38} -2 q^{-40} +2 q^{-42} + q^{-44} -3 q^{-46} -4 q^{-48} +4 q^{-52} - q^{-54} -5 q^{-56} - q^{-58} +5 q^{-60} +3 q^{-62} -3 q^{-64} -3 q^{-66} +3 q^{-68} +5 q^{-70} - q^{-72} -4 q^{-74} - q^{-76} +2 q^{-78} +3 q^{-80} - q^{-82} -2 q^{-84} - q^{-86} + q^{-90} } |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} - q^{-4} +3 q^{-6} -2 q^{-8} +6 q^{-10} -2 q^{-12} +5 q^{-14} -2 q^{-16} +6 q^{-18} -2 q^{-20} + q^{-22} - q^{-26} +3 q^{-28} -4 q^{-30} +5 q^{-32} -7 q^{-34} +6 q^{-36} -8 q^{-38} +5 q^{-40} -8 q^{-42} +4 q^{-44} -6 q^{-46} +3 q^{-48} - q^{-50} + q^{-52} +2 q^{-54} - q^{-56} +4 q^{-58} -3 q^{-60} +5 q^{-62} -4 q^{-64} +2 q^{-66} -3 q^{-68} +3 q^{-70} -2 q^{-72} - q^{-76} + q^{-78} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} - q^{-4} +4 q^{-6} -5 q^{-8} +5 q^{-10} - q^{-12} -5 q^{-14} +14 q^{-16} -15 q^{-18} +14 q^{-20} -5 q^{-22} -7 q^{-24} +17 q^{-26} -19 q^{-28} +15 q^{-30} - q^{-32} -9 q^{-34} +15 q^{-36} -12 q^{-38} +2 q^{-40} +11 q^{-42} -18 q^{-44} +16 q^{-46} -7 q^{-48} -4 q^{-50} +16 q^{-52} -21 q^{-54} +21 q^{-56} -13 q^{-58} +2 q^{-60} +8 q^{-62} -17 q^{-64} +19 q^{-66} -16 q^{-68} +7 q^{-70} +3 q^{-72} -12 q^{-74} +14 q^{-76} -11 q^{-78} -3 q^{-80} +12 q^{-82} -17 q^{-84} +12 q^{-86} -2 q^{-88} -12 q^{-90} +20 q^{-92} -18 q^{-94} +11 q^{-96} -10 q^{-100} +14 q^{-102} -11 q^{-104} +6 q^{-106} +2 q^{-108} -3 q^{-110} +4 q^{-112} -3 q^{-114} + q^{-118} + q^{-120} - q^{-122} - q^{-126} - q^{-132} + q^{-134} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 150"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^3+4 t^2-6 t+7-6 t^{-1} +4 t^{-2} - t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6-2 z^4+z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 29, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^8-3 q^7+4 q^6-5 q^5+5 q^4-4 q^3+4 q^2-2 q+1} |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6 a^{-4} +z^4 a^{-2} -4 z^4 a^{-4} +z^4 a^{-6} +3 z^2 a^{-2} -4 z^2 a^{-4} +2 z^2 a^{-6} +2 a^{-2} - a^{-4} } |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-4} +z^8 a^{-6} +2 z^7 a^{-3} +4 z^7 a^{-5} +2 z^7 a^{-7} +z^6 a^{-2} +z^6 a^{-8} -7 z^5 a^{-3} -12 z^5 a^{-5} -5 z^5 a^{-7} -4 z^4 a^{-2} -9 z^4 a^{-4} -5 z^4 a^{-6} +5 z^3 a^{-3} +8 z^3 a^{-5} +6 z^3 a^{-7} +3 z^3 a^{-9} +5 z^2 a^{-2} +8 z^2 a^{-4} +3 z^2 a^{-6} +z^2 a^{-8} +z^2 a^{-10} -2 z a^{-5} -3 z a^{-7} -z a^{-9} -2 a^{-2} - a^{-4} } |
Vassiliev invariants
| V2 and V3: | (1, 1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 4 is the signature of 10 150. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 150]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 150]] |
Out[3]= | PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 12, 6, 13], X[9, 17, 10, 16],X[17, 1, 18, 20], X[13, 19, 14, 18], X[19, 15, 20, 14],X[15, 11, 16, 10], X[11, 6, 12, 7], X[2, 8, 3, 7]] |
In[4]:= | GaussCode[Knot[10, 150]] |
Out[4]= | GaussCode[1, -10, 2, -1, -3, 9, 10, -2, -4, 8, -9, 3, -6, 7, -8, 4, -5, 6, -7, 5] |
In[5]:= | BR[Knot[10, 150]] |
Out[5]= | BR[4, {1, 1, 1, -2, 1, 1, 3, -2, -1, 3, 2}] |
In[6]:= | alex = Alexander[Knot[10, 150]][t] |
Out[6]= | -3 4 6 2 3 |
In[7]:= | Conway[Knot[10, 150]][z] |
Out[7]= | 2 4 6 1 + z - 2 z - z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 127], Knot[10, 150], Knot[11, NonAlternating, 51]} |
In[9]:= | {KnotDet[Knot[10, 150]], KnotSignature[Knot[10, 150]]} |
Out[9]= | {29, 4} |
In[10]:= | J=Jones[Knot[10, 150]][q] |
Out[10]= | 2 3 4 5 6 7 8 1 - 2 q + 4 q - 4 q + 5 q - 5 q + 4 q - 3 q + q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 150]} |
In[12]:= | A2Invariant[Knot[10, 150]][q] |
Out[12]= | 4 6 10 12 14 16 18 22 24 1 + q + q + 2 q - q + q - q - q - q + q |
In[13]:= | Kauffman[Knot[10, 150]][a, z] |
Out[13]= | 2 2 2 2 2 3-4 2 z 3 z 2 z z z 3 z 8 z 5 z 3 z |
In[14]:= | {Vassiliev[2][Knot[10, 150]], Vassiliev[3][Knot[10, 150]]} |
Out[14]= | {0, 1} |
In[15]:= | Kh[Knot[10, 150]][q, t] |
Out[15]= | 33 5 1 q q 5 7 7 2 9 2 |


