10 22
|
|
Visit 10 22's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 22's page at Knotilus! Visit 10 22's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X6271 X16,12,17,11 X12,3,13,4 X2,15,3,16 X14,5,15,6 X18,8,19,7 X20,10,1,9 X8,20,9,19 X4,13,5,14 X10,18,11,17 |
Gauss code | 1, -4, 3, -9, 5, -1, 6, -8, 7, -10, 2, -3, 9, -5, 4, -2, 10, -6, 8, -7 |
Dowker-Thistlethwaite code | 6 12 14 18 20 16 4 2 10 8 |
Conway Notation | [3313] |
Length is 11, width is 4. Braid index is 4. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^6-6 z^4-4 z^2+1} |
2nd Alexander ideal (db, data sources) | |
Determinant and Signature | { 49, 0 } |
Jones polynomial | |
HOMFLY-PT polynomial (db, data sources) | |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^9 a^{-1} +z^9 a^{-3} +4 z^8 a^{-2} +2 z^8 a^{-4} +2 z^8+3 a z^7-z^7 a^{-3} +2 z^7 a^{-5} +3 a^2 z^6-12 z^6 a^{-2} -6 z^6 a^{-4} +z^6 a^{-6} -2 z^6+2 a^3 z^5-6 a z^5-z^5 a^{-1} -7 z^5 a^{-5} +a^4 z^4-6 a^2 z^4+16 z^4 a^{-2} +6 z^4 a^{-4} -4 z^4 a^{-6} -z^4-3 a^3 z^3+7 a z^3-4 z^3 a^{-3} +6 z^3 a^{-5} -2 a^4 z^2+6 a^2 z^2-12 z^2 a^{-2} -6 z^2 a^{-4} +4 z^2 a^{-6} +6 z^2-a z+z a^{-1} +z a^{-3} -z a^{-5} -2 a^2+2 a^{-2} +2 a^{-4} -1} |
The A2 invariant | |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{66}-q^{64}+2 q^{62}-3 q^{60}+2 q^{58}-q^{56}-2 q^{54}+6 q^{52}-7 q^{50}+10 q^{48}-10 q^{46}+6 q^{44}+q^{42}-10 q^{40}+18 q^{38}-22 q^{36}+21 q^{34}-15 q^{32}+4 q^{30}+12 q^{28}-22 q^{26}+33 q^{24}-29 q^{22}+21 q^{20}-6 q^{18}-10 q^{16}+24 q^{14}-27 q^{12}+23 q^{10}-3 q^8-11 q^6+19 q^4-18 q^2+3+17 q^{-2} -36 q^{-4} +35 q^{-6} -27 q^{-8} +29 q^{-12} -52 q^{-14} +54 q^{-16} -43 q^{-18} +14 q^{-20} +13 q^{-22} -39 q^{-24} +48 q^{-26} -42 q^{-28} +24 q^{-30} + q^{-32} -21 q^{-34} +31 q^{-36} -23 q^{-38} +7 q^{-40} +12 q^{-42} -25 q^{-44} +26 q^{-46} -14 q^{-48} -7 q^{-50} +31 q^{-52} -40 q^{-54} +39 q^{-56} -20 q^{-58} -5 q^{-60} +26 q^{-62} -36 q^{-64} +37 q^{-66} -25 q^{-68} +8 q^{-70} +8 q^{-72} -18 q^{-74} +20 q^{-76} -15 q^{-78} +9 q^{-80} -2 q^{-82} -3 q^{-84} +4 q^{-86} -5 q^{-88} +3 q^{-90} - q^{-92} + q^{-94} } |
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{26}-q^{24}+3 q^{20}-3 q^{18}-q^{16}+6 q^{14}-6 q^{12}-3 q^{10}+10 q^8-7 q^6-5 q^4+10 q^2-1-4 q^{-2} +2 q^{-4} +5 q^{-6} -3 q^{-8} -5 q^{-10} +8 q^{-12} + q^{-14} -9 q^{-16} +6 q^{-18} +5 q^{-20} -10 q^{-22} +2 q^{-24} +6 q^{-26} -6 q^{-28} - q^{-30} +4 q^{-32} - q^{-34} - q^{-36} + q^{-38} } |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{12}+q^8+q^6-q^4+2 q^2-1- q^{-4} -2 q^{-6} + q^{-8} - q^{-10} + q^{-12} + q^{-14} + q^{-18} } |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}-q^{26}+2 q^{22}-3 q^{20}+7 q^{16}-4 q^{14}-2 q^{12}+10 q^{10}-3 q^8-5 q^6+8 q^4-2 q^2-5+2 q^{-2} -3 q^{-6} -4 q^{-8} +4 q^{-10} +2 q^{-12} -7 q^{-14} +4 q^{-16} +6 q^{-18} -7 q^{-20} +3 q^{-22} +6 q^{-24} -5 q^{-26} +2 q^{-28} +2 q^{-30} -4 q^{-32} + q^{-34} + q^{-36} - q^{-38} + q^{-40} } |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{38}-q^{36}+q^{34}-2 q^{32}+3 q^{30}-4 q^{28}+4 q^{26}-4 q^{24}+8 q^{22}-6 q^{20}+7 q^{18}-5 q^{16}+10 q^{14}-4 q^{12}+4 q^{10}-3 q^8+2 q^6+3 q^4-6 q^2+6-12 q^{-2} +11 q^{-4} -14 q^{-6} +12 q^{-8} -17 q^{-10} +13 q^{-12} -13 q^{-14} +11 q^{-16} -10 q^{-18} +6 q^{-20} -3 q^{-22} +2 q^{-24} +2 q^{-26} -2 q^{-28} +8 q^{-30} -5 q^{-32} +8 q^{-34} -7 q^{-36} +9 q^{-38} -7 q^{-40} +5 q^{-42} -6 q^{-44} +4 q^{-46} -3 q^{-48} +2 q^{-50} - q^{-52} + q^{-54} } |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 22"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^6-6 z^4-4 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 49, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^9 a^{-1} +z^9 a^{-3} +4 z^8 a^{-2} +2 z^8 a^{-4} +2 z^8+3 a z^7-z^7 a^{-3} +2 z^7 a^{-5} +3 a^2 z^6-12 z^6 a^{-2} -6 z^6 a^{-4} +z^6 a^{-6} -2 z^6+2 a^3 z^5-6 a z^5-z^5 a^{-1} -7 z^5 a^{-5} +a^4 z^4-6 a^2 z^4+16 z^4 a^{-2} +6 z^4 a^{-4} -4 z^4 a^{-6} -z^4-3 a^3 z^3+7 a z^3-4 z^3 a^{-3} +6 z^3 a^{-5} -2 a^4 z^2+6 a^2 z^2-12 z^2 a^{-2} -6 z^2 a^{-4} +4 z^2 a^{-6} +6 z^2-a z+z a^{-1} +z a^{-3} -z a^{-5} -2 a^2+2 a^{-2} +2 a^{-4} -1} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {...}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {10_35, ...}
Vassiliev invariants
V2 and V3: | (-4, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 22. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | Not Available |
6 | Not Available |
7 | Not Available |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.