6 2
From Knot Atlas
Jump to navigationJump to search
|
|
![]() |
Visit 6 2's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 6 2's page at Knotilus! Visit 6 2's page at the original Knot Atlas! Dror likes to call 6_2 "The Miller Institute Knot", as it is the logo of the Miller Institute for Basic Research. The bowline knot of practical knot tying deforms to 6_2. |
![]() The Miller Institute Mug [1] |
Knot presentations
Planar diagram presentation | X1425 X5,10,6,11 X3948 X9,3,10,2 X7,12,8,1 X11,6,12,7 |
Gauss code | -1, 4, -3, 1, -2, 6, -5, 3, -4, 2, -6, 5 |
Dowker-Thistlethwaite code | 4 8 10 12 2 6 |
Conway Notation | [312] |
Length is 6, width is 3. Braid index is 3. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (-1, 1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 6 2. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|