| In[1]:=     | << KnotTheory` | 
| Loading KnotTheory` (version of August 29, 2005, 15:27:48)... | 
| In[2]:= | PD[Knot[10, 153]] | 
| Out[2]=   | PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 6, 13, 5], X[13, 18, 14, 19], 
 X[9, 16, 10, 17], X[17, 10, 18, 11], X[15, 20, 16, 1], 
X[19, 14, 20, 15], X[6, 12, 7, 11], X[2, 8, 3, 7]] | 
| In[3]:= | GaussCode[Knot[10, 153]] | 
| Out[3]=   | GaussCode[1, -10, 2, -1, 3, -9, 10, -2, -5, 6, 9, -3, -4, 8, -7, 5, -6, 
  4, -8, 7] | 
| In[4]:= | DTCode[Knot[10, 153]] | 
| Out[4]=   | DTCode[4, 8, 12, 2, -16, 6, -18, -20, -10, -14] | 
| In[5]:= | br = BR[Knot[10, 153]] | 
| Out[5]=   | BR[4, {-1, -1, -1, -2, -1, -1, 3, 2, 2, 2, 3}] | 
| In[6]:= | {First[br], Crossings[br]} | 
| Out[6]=   | {4, 11} | 
| In[7]:= | BraidIndex[Knot[10, 153]] | 
| Out[7]=   | 4 | 
| In[8]:= | Show[DrawMorseLink[Knot[10, 153]]] | 
|  |  | 
| Out[8]= | -Graphics- | 
| In[9]:= | (#[Knot[10, 153]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} | 
| Out[9]=   | {Chiral, 2, 3, 3, NotAvailable, 1} | 
| In[10]:= | alex = Alexander[Knot[10, 153]][t] | 
| Out[10]=   |      -3    -2   1        2    3
3 + t   - t   - - - t - t  + t
t | 
| In[11]:= | Conway[Knot[10, 153]][z] | 
| Out[11]=   |        2      4    6
1 + 4 z  + 5 z  + z | 
| In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] | 
| Out[12]=   | {Knot[10, 153]} | 
| In[13]:= | {KnotDet[Knot[10, 153]], KnotSignature[Knot[10, 153]]} | 
| Out[13]=   | {1, 0} | 
| In[14]:= | Jones[Knot[10, 153]][q] | 
| Out[14]=   |      -5    -4    -3    -2        2    3    4
1 - q   + q   - q   + q   + q - q  + q  - q | 
| In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] | 
| Out[15]=   | {Knot[10, 153]} | 
| In[16]:= | A2Invariant[Knot[10, 153]][q] | 
| Out[16]=   |      -16    -12    -10   2    2       2    8    10    12
3 - q    - q    - q    + -- + -- + 2 q  - q  - q   - q
                          4    2
q    q | 
| In[17]:= | HOMFLYPT[Knot[10, 153]][a, z] | 
| Out[17]=   |                               2                           4
   3     2    4       2   4 z     2  2    4  2      4   z     6
 6 - -- - a  - a  + 10 z  - ---- - a  z  - a  z  + 6 z  - -- + z
     2                       2                            2
a                       a                            a | 
| In[18]:= | Kauffman[Knot[10, 153]][a, z] | 
| Out[18]=   |     3     2    4   5 z   10 z              3        5         2
6 + -- + a  - a  - --- - ---- - 6 a z + 2 a  z + 3 a  z - 12 z  - 
     2              3     a
   a              a
    2                           3       3
 7 z       2  2      4  2   10 z    22 z          3      3  3
 ---- - 2 a  z  + 3 a  z  + ----- + ----- + 12 a z  - 4 a  z  - 
   2                          3       a
  a                          a
                       4                5       5
    5  3       4   10 z       4  4   6 z    13 z         5    3  5
 4 a  z  + 14 z  + ----- - 4 a  z  - ---- - ----- - 7 a z  + a  z  + 
                     2                 3      a
                    a                 a
                   6            7      7                8
  5  5      6   6 z     4  6   z    2 z       7    8   z
 a  z  - 7 z  - ---- + a  z  + -- + ---- + a z  + z  + --
                  2             3    a                  2
a             a                       a | 
| In[19]:= | {Vassiliev[2][Knot[10, 153]], Vassiliev[3][Knot[10, 153]]} | 
| Out[19]=   | {4, -1} | 
| In[20]:= | Kh[Knot[10, 153]][q, t] | 
| Out[20]=   | 3         1        1       1       1       1      1      1    t
- + q + ------ + ----- + ----- + ----- + ----- + ---- + --- + - + 
q        11  5    7  4    7  3    5  2    3  2    5     q t   q
        q   t    q  t    q  t    q  t    q  t    q  t
  3        2    3  2    5  3    5  4    9  5
q  t + q t  + q  t  + q  t  + q  t  + q  t | 
| In[21]:= | ColouredJones[Knot[10, 153], 2][q] | 
| Out[21]=   |       -15    -14    -13    2     2     -9   2     -7   5    3    4
-6 + q    - q    - q    + --- - --- - q   + -- + q   - -- + -- + -- - 
                           12    10          8          6    5    4
                         q     q           q          q    q    q
 7    4    4            2      3    4      5      6    7    8    9
 -- + -- + - + 3 q + 4 q  - 5 q  + q  + 2 q  - 2 q  + q  - q  - q  + 
  3    2   q
 q    q
    10    11    12    13
2 q   - q   - q   + q |