10 76

From Knot Atlas
Revision as of 17:19, 29 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

10 75.gif

10_75

10 77.gif

10_77

10 76.gif Visit 10 76's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 76's page at Knotilus!

Visit 10 76's page at the original Knot Atlas!

10 76 Quick Notes


10 76 Further Notes and Views

Knot presentations

Planar diagram presentation X4251 X14,10,15,9 X12,3,13,4 X2,13,3,14 X18,6,19,5 X20,8,1,7 X6,20,7,19 X8,18,9,17 X16,12,17,11 X10,16,11,15
Gauss code 1, -4, 3, -1, 5, -7, 6, -8, 2, -10, 9, -3, 4, -2, 10, -9, 8, -5, 7, -6
Dowker-Thistlethwaite code 4 12 18 20 14 16 2 10 8 6
Conway Notation [3,3,2++]

Minimum Braid Representative:

BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif

Length is 11, width is 4.

Braid index is 4.

A Morse Link Presentation:

10 76 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [1][-13]
Hyperbolic Volume 11.5129
A-Polynomial See Data:10 76/A-polynomial

[edit Notes for 10 76's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 10 76's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 57, 4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {...}

Same Jones Polynomial (up to mirroring, ): {...}

Vassiliev invariants

V2 and V3: (-2, -6)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 10 76. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-1012345678χ
21          11
19         2 -2
17        41 3
15       42  -2
13      54   1
11     54    -1
9    35     -2
7   35      2
5  13       -2
3 14        3
1           0
-11          1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials