In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[6, 2]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2],
X[7, 12, 8, 1], X[11, 6, 12, 7]] |
In[3]:= | GaussCode[Knot[6, 2]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, 6, -5, 3, -4, 2, -6, 5] |
In[4]:= | DTCode[Knot[6, 2]] |
Out[4]= | DTCode[4, 8, 10, 12, 2, 6] |
In[5]:= | br = BR[Knot[6, 2]] |
Out[5]= | BR[3, {-1, -1, -1, 2, -1, 2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 6} |
In[7]:= | BraidIndex[Knot[6, 2]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[6, 2]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[6, 2]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 2, {3, 4}, 1} |
In[10]:= | alex = Alexander[Knot[6, 2]][t] |
Out[10]= | -2 3 2
-3 - t + - + 3 t - t
t |
In[11]:= | Conway[Knot[6, 2]][z] |
Out[11]= | 2 4
1 - z - z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[6, 2]} |
In[13]:= | {KnotDet[Knot[6, 2]], KnotSignature[Knot[6, 2]]} |
Out[13]= | {11, -2} |
In[14]:= | Jones[Knot[6, 2]][q] |
Out[14]= | -5 2 2 2 2
-1 + q - -- + -- - -- + - + q
4 3 2 q
q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[6, 2]} |
In[16]:= | A2Invariant[Knot[6, 2]][q] |
Out[16]= | -16 -8 -4 -2 2 4
1 + q - q - q + q + q + q |
In[17]:= | HOMFLYPT[Knot[6, 2]][a, z] |
Out[17]= | 2 4 2 2 2 4 2 2 4
2 - 2 a + a + z - 3 a z + a z - a z |
In[18]:= | Kauffman[Knot[6, 2]][a, z] |
Out[18]= | 2 4 3 5 2 2 2 4 2 6 2
2 + 2 a + a - a z - a z - 3 z - 6 a z - 2 a z + a z -
3 5 3 4 2 4 4 4 5 3 5
2 a z + 2 a z + z + 3 a z + 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[6, 2]], Vassiliev[3][Knot[6, 2]]} |
Out[19]= | {-1, 1} |
In[20]:= | Kh[Knot[6, 2]][q, t] |
Out[20]= | -3 2 1 1 1 1 1 1 1 t
q + - + ------ + ----- + ----- + ----- + ----- + ---- + ---- + - +
q 11 4 9 3 7 3 7 2 5 2 5 3 q
q t q t q t q t q t q t q t
3 2
q t |
In[21]:= | ColouredJones[Knot[6, 2], 2][q] |
Out[21]= | -14 2 4 5 6 6 6 5 -3 5 3
-1 + q - --- + --- - --- + -- - -- + -- - -- - q + -- - - + 3 q -
13 11 10 8 7 5 4 2 q
q q q q q q q q
2 3 4
q - q + q |