In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 87]] |
Out[2]= | PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[14, 6, 15, 5], X[20, 16, 1, 15],
X[16, 7, 17, 8], X[6, 19, 7, 20], X[8, 12, 9, 11], X[18, 13, 19, 14],
X[12, 17, 13, 18], X[2, 10, 3, 9]] |
In[3]:= | GaussCode[Knot[10, 87]] |
Out[3]= | GaussCode[1, -10, 2, -1, 3, -6, 5, -7, 10, -2, 7, -9, 8, -3, 4, -5, 9,
-8, 6, -4] |
In[4]:= | DTCode[Knot[10, 87]] |
Out[4]= | DTCode[4, 10, 14, 16, 2, 8, 18, 20, 12, 6] |
In[5]:= | br = BR[Knot[10, 87]] |
Out[5]= | BR[4, {1, 1, 1, 2, -1, -3, 2, -3, 2, -3, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 87]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 87]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 87]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Chiral, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 87]][t] |
Out[10]= | 2 9 18 2 3
23 - -- + -- - -- - 18 t + 9 t - 2 t
3 2 t
t t |
In[11]:= | Conway[Knot[10, 87]][z] |
Out[11]= | 4 6
1 - 3 z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 87], Knot[10, 98], Knot[11, Alternating, 58],
Knot[11, Alternating, 165], Knot[11, NonAlternating, 72]} |
In[13]:= | {KnotDet[Knot[10, 87]], KnotSignature[Knot[10, 87]]} |
Out[13]= | {81, 0} |
In[14]:= | Jones[Knot[10, 87]][q] |
Out[14]= | -4 3 6 10 2 3 4 5 6
13 + q - -- + -- - -- - 13 q + 13 q - 10 q + 7 q - 4 q + q
3 2 q
q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 87]} |
In[16]:= | A2Invariant[Knot[10, 87]][q] |
Out[16]= | -12 -10 -8 -6 3 2 2 4 8 10
-2 + q - q + q + q - -- + -- + q + 2 q + 4 q - 2 q -
4 2
q q
16 18
2 q + q |
In[17]:= | HOMFLYPT[Knot[10, 87]][a, z] |
Out[17]= | 2 2 4 4
-4 3 2 2 z z 2 2 4 z 2 z
-2 - a + -- + a - 4 z + -- + -- + 2 a z - 3 z + -- - ---- +
2 4 2 4 2
a a a a a
6
2 4 6 z
a z - z - --
2
a |
In[18]:= | Kauffman[Knot[10, 87]][a, z] |
Out[18]= | 2 2 2
-4 3 2 z z 3 2 z z 3 z
-2 - a - -- - a - -- - - + a z + a z + 7 z + -- + -- + ---- +
2 3 a 6 4 2
a a a a a
3 3 3
2 2 4 2 7 z 15 z 13 z 3 3 3 4
3 a z - a z + ---- + ----- + ----- + 2 a z - 3 a z - 5 z -
5 3 a
a a
4 4 4 5 5 5
2 z 5 z 8 z 2 4 4 4 11 z 23 z 21 z
---- + ---- + ---- - 5 a z + a z - ----- - ----- - ----- -
6 4 2 5 3 a
a a a a a
6 6 6 7
5 3 5 6 z 12 z 21 z 2 6 4 z
6 a z + 3 a z - 3 z + -- - ----- - ----- + 5 a z + ---- +
6 4 2 5
a a a a
7 7 8 8 9 9
5 z 7 z 7 8 5 z 10 z 2 z 2 z
---- + ---- + 6 a z + 5 z + ---- + ----- + ---- + ----
3 a 4 2 3 a
a a a a |
In[19]:= | {Vassiliev[2][Knot[10, 87]], Vassiliev[3][Knot[10, 87]]} |
Out[19]= | {0, 1} |
In[20]:= | Kh[Knot[10, 87]][q, t] |
Out[20]= | 7 1 2 1 4 2 6 4
- + 7 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 7 q t +
q 9 4 7 3 5 3 5 2 3 2 3 q t
q t q t q t q t q t q t
3 3 2 5 2 5 3 7 3 7 4 9 4
6 q t + 6 q t + 7 q t + 4 q t + 6 q t + 3 q t + 4 q t +
9 5 11 5 13 6
q t + 3 q t + q t |
In[21]:= | ColouredJones[Knot[10, 87], 2][q] |
Out[21]= | -12 3 2 6 16 12 18 51 33 47 105 46
90 + q - --- + --- + -- - -- + -- + -- - -- + -- + -- - --- + -- -
11 10 9 8 7 6 5 4 3 2 q
q q q q q q q q q q
2 3 4 5 6 7 8
143 q + 35 q + 120 q - 141 q + 7 q + 123 q - 105 q - 20 q +
9 10 11 12 13 14 15 16
97 q - 54 q - 31 q + 53 q - 13 q - 20 q + 15 q + q -
17 18
4 q + q |