In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[5, 2]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 10, 6, 1], X[9, 6, 10, 7],
X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[5, 2]] |
Out[3]= | GaussCode[-1, 5, -2, 1, -3, 4, -5, 2, -4, 3] |
In[4]:= | DTCode[Knot[5, 2]] |
Out[4]= | DTCode[4, 8, 10, 2, 6] |
In[5]:= | br = BR[Knot[5, 2]] |
Out[5]= | BR[3, {-1, -1, -1, -2, 1, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 6} |
In[7]:= | BraidIndex[Knot[5, 2]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[5, 2]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[5, 2]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 1, 2, {3, 4}, 1} |
In[10]:= | alex = Alexander[Knot[5, 2]][t] |
Out[10]= | 2
-3 + - + 2 t
t |
In[11]:= | Conway[Knot[5, 2]][z] |
Out[11]= | 2
1 + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[5, 2]} |
In[13]:= | {KnotDet[Knot[5, 2]], KnotSignature[Knot[5, 2]]} |
Out[13]= | {7, -2} |
In[14]:= | Jones[Knot[5, 2]][q] |
Out[14]= | -6 -5 -4 2 -2 1
-q + q - q + -- - q + -
3 q
q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[5, 2], Knot[11, NonAlternating, 57]} |
In[16]:= | A2Invariant[Knot[5, 2]][q] |
Out[16]= | -20 -18 -12 -10 -8 -6 -2
-q - q + q + q + q + q + q |
In[17]:= | HOMFLYPT[Knot[5, 2]][a, z] |
Out[17]= | 2 4 6 2 2 4 2
a + a - a + a z + a z |
In[18]:= | Kauffman[Knot[5, 2]][a, z] |
Out[18]= | 2 4 6 5 7 2 2 4 2 6 2 3 3
-a + a + a - 2 a z - 2 a z + a z - a z - 2 a z + a z +
5 3 7 3 4 4 6 4
2 a z + a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[5, 2]], Vassiliev[3][Knot[5, 2]]} |
Out[19]= | {2, -3} |
In[20]:= | Kh[Knot[5, 2]][q, t] |
Out[20]= | -3 1 1 1 1 1 1 1
q + - + ------ + ----- + ----- + ----- + ----- + ----
q 13 5 9 4 9 3 7 2 5 2 3
q t q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[5, 2], 2][q] |
Out[21]= | -17 -16 -15 2 -13 2 3 -10 3 4 -7
q - q - q + --- - q - --- + --- - q - -- + -- - q -
14 12 11 9 8
q q q q q
2 3 -3 -2
-- + -- - q + q
6 5
q q |